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Update statistics in conservative parallel-discrete-event simulations of asynchronous systems

A. Kolakowska* and M. A. Novotny†

Department of Physics and Astronomy and the ERC Center for Computational Sciences, P.O. Box 5167,
Mississippi State, Mississippi 39762-5167, USA

Per Arne Rikvold‡

School of Computational Science and Information Technology, Center for Materials Research and Technology,
and Department of Physics, Florida State University, Tallahassee, Florida 32306-4120, USA

~Received 7 June 2003; published 14 October 2003!

We model the performance of an ideal closed chain ofL processing elements that work in parallel in an
asynchronous manner. Their state updates follow a generic conservative algorithm. The conservative update
rule determines the growth of a virtual time surface. The physics of this growth is reflected in the utilization
~the fraction of working processors! and in the interface width. We show that it is possible to make an explicit
connection between the utilization and the microscopic structure of the virtual time interface. We exploit this
connection to derive the theoretical probability distribution of updates in the system within an approximate
model. It follows that the theoretical lower bound for the computational speedup iss5(L11)/4 for L>4. Our
approach uses simple statistics to count distinct surface-configuration classes consistent with the model growth
rule. It enables one to compute analytically microscopic properties of an interface, which are unavailable by
continuum methods.
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I. INTRODUCTION

In discrete-event simulations a physical system with s
chastic dynamics is modeled on a lattice of discrete po
and changes of its state are viewed as discrete events in
Physical processes interact with each other at various po
in simulation time. The stochastic nature of these interacti
makes it difficult to utilize a parallel computing environme
to the fullest extent becausea priori there is no global clock
to synchronize physical processes. Examples of such c
plex systems with underlying asynchronous dynamics co
from a wide range of fields, such as activated processe
chemistry, contact processes in epidemiology and ecol
models, population dynamics, finance markets, and com
nication networks and internet traffic, to mention a few.
physics an important example is an interacting spin syst
where stochastic processes can be simulated with a dyn
Monte Carlo approach. Until recently, a common belief
the physics community was that even the simplest rand
site update Monte Carlo schemes@1# were inherently serial.
A popular parallelization technique for these systems is
so-called ‘‘trivial parallelization,’’ in which each processo
carries a copy of the full system. An obvious limitation
this technique is imposed by the memory requirement, wh
may exceed available resources for a large-scale simula
In nontrivial parallelization, a system is spatially partition
into subsystems, and each subsystem is placed on a diffe
processor. In other words, in this wayphysical processesand
physical interactions between subsystems are mappe
logical processesand logical dependences between proce
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ing elements. Each logical process manages the state o
assigned physical subsystem and progresses in its own
virtual time ~LVT !. The asynchronous nature of the physic
dynamics implies an asynchronous system of logical p
cesses where discrete events are not synchronized by a
bal clock. Logical processes execute concurrently and
change time-stamped messages to perform state updat
the entire physical system being simulated. A sufficient c
dition for preserving causality in simulations~the so-called
local causality constraint! requires that each logical proces
works out the received messages from other logical p
cesses in nondecreasing time-stamp order@2,3#.

Parallel-discrete-event simulations~PDES! are classified
in two broad categories: conservative PDES and optimi
PDES. In conservative PDES, originally studied by Chan
and Misra@2,4# and introduced by Lubachevsky in the stud
of dynamic Ising spin systems@5,6#, an algorithm does no
allow a logical process to advance its LVT~i.e., to proceed
with computations! until it is certain that no causality viola
tion can occur. In the conservative update scenario a log
process may have to be blocked and it may have to wai
ensure that no message with a lower time stamp is rece
later. Recent physics applications of conservative PDES
modeling magnetization switching@7#, ballistic particle
deposition@8#, and a dynamic phase transition in highly a
isotropic thin-film ferromagnets@9,10# suggest that the con
servative algorithm should be very efficient in simulating t
dynamics of complex systems with short-range interactio
In optimistic PDES@11–15#, originated by Jefferson’s time
warp algorithm@11#, an algorithm allows a logical process t
advance its LVT regardless of the possibility of a causa
error that may happen in the case of receiving a mess
with a lower time stamp than the local clock. The optimis
scenario detects causality errors and provides a recovery
cedure from the violation of the local causality constraint
©2003 The American Physical Society05-1



re
da
w
pt
w
ys

e
b
tic
em
a
vio

ou
po
liz
tio
ss
al
ro
c

el
in
te

b
th
he

th
ni

g

. I
is
t
tu
d

he

iv
s
a

n
th
ov

io
bl
it
o
n

ies
con-

e
ith

of
dy-
osi-
th

ule.

-
f a
of

ast
ion
the
ies
for

ap-

s.
e a
er-
te
tili-

the
the
ate
imi-

rface
id

g
ble

nd
s-
ple

ion

hat
th

cal
en-
the
os-
on-
ults
ta-
u-
of
that
il-
at

KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
rolling back the events that have been processed prematu
Although there are no general performance studies to
that would provide an unbiased comparison of the t
groups of algorithms, a common perception is that an o
mistic PDES should outperform a conservative PDES. Ho
ever, in the context of physics applications to Ising spin s
tems, recent numerical studies by Slootet al. @16#
demonstrate that near the Ising critical temperature, wh
long-range correlations occur in the physical spin system
ing modeled, the computational complexity of an optimis
PDES and the physical complexity of the modeled syst
are entangled, leading to a nonlinear increase of the roll-b
length and a sudden deterioration of the run-time beha
when the number of computing processors is increased.

There are several aspects of PDES algorithms that sh
be considered in systematic efficiency studies. Some im
tant aspects are the synchronization procedures, the uti
tion of the parallel environment as measured by the frac
of working processors, memory requirements, interproce
communications handling, scalability as measured by ev
ating the performance when the number of computing p
cessors becomes large, and the speedup as measured by
paring the performance with sequential DES. In routin
performed studies to date, the efficiency is investigated
heuristic fashion by testing the performance of a selec
application in a chosen PDES environment~i.e., in a parallel
simulator!. Recently, Kornisset al. @17# introduced a novel
and powerful approach in which a PDES algorithm can
studied in an abstract way by extracting key features of
algorithm, simulating its performance, and applying t
methods of nonequilibrium surface growth@18# to evaluate
its theoretical efficiency. In the Kornisset al. approach, the
main concept is the simulated time horizon~STH!, defined as
the collection of LVTs of all logical processes. The grow
rule of this virtual time surface is defined by the commu
cation rule among logical processes~i.e., by their communi-
cation topology, which in turn is defined by the underlyin
dynamics of the physical system being simulated! and by the
way in which the algorithm handles the advances in LVTs
this picture, the utilization of the parallel environment
evaluated as the mean density of local update sites of
growing time interface, and the width of the interface at sa
ration provides a measure of desynchronization that is
rectly related to the memory requirements@19#. Scalability
properties of a PDES algorithm can be assessed from t
performance simulation studies@17,19,20#.

In the study of the STH generated by a conservat
PDES @17#, it has been determined that in the worst-ca
conservative scenario for a closed spin chain, when e
processing element~PE! carries only one spin site~i.e., each
logical process simply corresponds to the flipping of o
spin! and communicates only with its nearest neighbors,
time evolution of the STH on coarse-grained scales is g
erned by the Kardar-Parisi-Zhang stochastic equation@21#.
This proves, by universality arguments, that the simulat
phase of conservative PDES is asymptotically scala
which guarantees a nonzero utilization even for an infin
number of PEs. Using the same argument, it has been sh
that the STH becomes infinitely rough in the limit of a
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infinite number of PEs, which suggests possible difficult
with data management. Thus, the measurement phase of
servative PDES is not asymptotically scalable@19#. Recent
simulation studies@20# show that conservative PDES can b
made fully scalable when the algorithm is supplemented w
either a moving time window constraint@22,23# or additional
scale-free communication patterns between PEs@24#.

From the physics point of view, the virtual time surface
the generic conservative PDES, with its morphology and
namics, can be viewed as a surface growing through dep
tion of random time increments in accordance with a grow
rule defined by a generic conservative PDES update r
The physics of this growth is reflected in the utilization~the
fraction of nonidling PEs! that corresponds to the mean num
ber of deposition events on the surface. In the case o
closed spin chain this is equivalent to the mean density
local minima in the interface. It should be possible, at le
for steady-state simulations, to make an explicit connect
between the utilization and the microscopic structure of
interface. Such a connection would enable rigorous stud
of the update statistics and a closed theoretical formula
the utilization. The coarse-grained methods previously
plied to this problem@17# provide a proof of asymptotic
scaling properties in the limit of a large number of PE
Because of their continuum nature they can neither giv
detailed microscopic description of the interface nor is it c
tain if their results are valid for statistically feasible modera
to large numbers of PEs. On the other hand, the mean u
zation strictly depends on the microscopic structure of
STH. In this paper we explore the connection between
STH interface morphology on the microscale and the upd
statistics by addressing the above questions. Recently, s
lar connections have been established between the inte
microstructure and its mobility for Ising and solid-on-sol
models with various dynamics@25–28#.

Section II outlines the simulation algorithm for modelin
the generic conservative PDES of spatially decomposa
cellular automata when each PE carriesN lattice sites. The
steady-state update statistics forN51 is analyzed in Sec. III.
Here we derive formulas for the theoretical utilization a
the theoretical probability distribution of updates in the sy
tem within an approximate model. Our approach uses sim
statistics to build and to count distinct surface-configurat
classes consistent with a model update rule~or deposition
rule!. The idea may be generally applied to any surface t
grows on a lattice by a known growth rule. When the grow
recipe is known, it is possible to construct diagrams of lo
lattice-site configurations and to translate the rule to dep
dences among the graphs. Then the event probability on
surface is deduced from the corresponding diagram of p
sible surface-configuration classes. The performance of c
servative algorithms is discussed in Sec. IV, where the res
of Sec. III are applied to estimate the theoretical compu
tional speedup for the ideal system of PEs in a ring comm
nication topology. In Sec. V we discuss generalizations
our approach to other growth processes and advantages
follow in terms of practical applications such as the possib
ity of computing closed-form expressions for quantities th
would be unavailable by standard approaches.
5-2
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UPDATE STATISTICS IN CONSERVATIVE PARALLEL- . . . PHYSICAL REVIEW E 68, 046705 ~2003!
II. MODEL SIMULATIONS OF CONSERVATIVE
UPDATE EVENTS

We consider an ideal system ofL processors, arranged o
a ring~Fig. 1!. As an ideal system we understand a system
identical PEs, where communications between PEs t
place instantaneously. Each PE carriesN lattice sites,Nb of
which are border sites and (N2Nb) are interior sites~where
all immediate lattice neighbors reside on the same PE!. On
each PE the simulation algorithm randomly selects one of
N sites. If the selected site is a border site, the PE is requ
to communicate with its immediate neighbor~s! in an update
attempt. If an interior site is selected, the update happ
without communication between PEs. For this system, a
crete event means an update attempt. The state of the sy
does not change between update attempts. Processing
ments perform operations concurrently. However, update
tempts are not synchronized by a global clock.

An example of the kind of system described above i
large, spatially extended ensemble of spins, arranged o
regular lattice, with a concurrent operation of random Mo
Carlo spin-flip attempts. In this picture, the ensemble is s
tially decomposed intoL subsystems, each of which carrie
N spin sites. Each subsystem is placed on a PE, and
required communication is the exchange of informat
about states of the border spins~Fig. 1!. In the simplest case
of N51, the system is a closed spin chain, and the spin-
attempt at thekth PE depends on the two nearest-neigh
spins located on the (k21)th and the (k11)th PEs. Thekth
PE is not allowed to update until it receives information fro
the neighboring PEs. For generalN, a sublattice assigned t
a PE hasNb border spins. However, for example, in Mon
Carlo simulations, at each update attempt only one of
border sites may be randomly selected at a time: either a
from the left border slice or a site from the right border slic
Therefore, considering communications between logical p
cesses, there are only two effective border sites per PE w
N>2. The case whenN.1 and the effectiveNb51 is real-

FIG. 1. The mapping of physical processes to logical proces
considered in this work. The nearest-neighbor physical interact
~two-sided arrows in the left part! on a lattice with periodic bound
ary conditions are mapped to the ring communication topology
logical processes~two-sided arrows in the right part!. Each PE car-
ries N lattice sites, but communications take place only at bor
sites. In this study, each PE has at most two effective border s
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ized when on each PE the left and the right border sli
coincide. This case is equivalent to a closed spin chain,
to the case ofN51.

In generic conservative PDES, to simulate asynchron
dynamics employingL processors, thekth PE generates its
own local simulated timetk for the next update attempt. Th
kth local simulated time models the LVT of thekth logical
process. Update attempts are simulated as indepen
Poisson-random processes, in which thekth random time
incrementhk ~i.e., the random time interval between tw
successive attempts! is exponentially distributed with uni
mean. A processor is allowed to update its local time only
the update is guaranteed not to violate causality. Otherw
it remains idle. The time stept is the index of the simulta-
neously performed update attempt. It corresponds to an i
ger wall-clock time with each PE attempting an update
each value oft. Explicitly, in our model simulations the ge
neric conservative update rule allows thekth PE to update at
any time step (t11) if either of the two conditions is satis
fied. First condition: the randomly chosen lattice site is in t
interior. Second condition: the randomly chosen lattice sit
a border site and either of the following update conditions
satisfied:

N51:tk~ t !<min$tk21~ t !,tk11~ t !%, ~1!

N>2:tk~ t !<t r~ t !, ~2!

where r 5k21 when the left border site is chosen andr
5k11 when the right border site is chosen. Following
successful update attempt, the local simulated time is in
mented for the next update attempt:tk(t11)5tk(t)
1hk(t). The random time incrementhk(t) is computed at
eachk and t ashk(t)52 ln(r), wherer P(0;1# is a uniform
deviate. The periodicity condition requires communicati
between the first and the last PEs in the chain:tL11(t)
5t1(t). In simulations we iterate either the update rule~1!
or the update rule~2!, starting with the initial condition
tk(t50)50 for all k.

For the set ofL processing elements, we define the ST
as the set ofL local simulated times at time stept. The mean
height of the STH is given by the mean virtual tim
^t(t)&L51/L(k51

L tk(t). Figure 2 presents the STH gene

es
s

f

r
s.

FIG. 2. The growth and roughening of the STH forL5100 and
N51: snapshots att1 ~lower surface! andt2 ~upper surface!. Here,
t1,t2!t3'3700. Local heightstk are in arbitrary units.
5-3
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KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
ated for a closed chain ofL5100 processors. As the tim
index advances, the STH grows and roughens. The time
lution of the statistical spread of the interface is characteri
by two distinct phases, the growth phase~when t!t3) and
the saturation phase~when t@t3), separated by the cross
over time t3 . For a finiteL, t3 marks the transition to the
steady state, where the average width of the interface is
stant in time and is given by the power law (NL)1/2 @17,29#.

To study the parallel efficiency, we define the utilizatio
u(t) as the fraction of PEs that perform an update at
parallel time stept. The simulated utilization̂u(t)& is com-
puted as an ensemble average over many independent s
lations. The time evolution of the simulated utilizatio
reaches a steady state^u(t)&5const that depends on the sy
tem size~Fig. 3!: the steady-state utilization grows mon
tonically with N. Note, forN51, according to the conserva
tive update rule~1!, at t the update at thekth PE site does no
happen unless its cumulative local simulated time aftert
21) steps is not larger than the cumulative local simula
times at its neighboring PE sites. This means that an up
at the kth PE site corresponds to a local minimum of t
STH at thekth site. Accordingly, the mean utilization̂u(t)&
represents the mean number of local minima in the S
interface att, averaged over many independent simulatio
In an individual simulation, the utilizationu(t) is the density
of the local minima in the STH that is generated in th
simulation. WhenN>2 the utilizationu(t) is the density of
updating sites in the interface. It is important to distingu
betweenu(t) and ^u(t)& as u(t) is the characteristic of a
particular class of the STH configurations, while^u(t)& is
the average measurement ofu(t) taken over all possible con
figuration classes. In analyzing the steady-state update s
tics the steady-state utilization is denoted byu.

III. STEADY-STATE UPDATE STATISTICS FOR NÄ1

The STH of the generic PDES can be identified with
one-dimensional~1D! interface growing on a ring with the

FIG. 3. The time evolution of the utilization̂u(t)& ~averaged
over K51024 simulations! for L510 and 104 with N51,10,100.
The result depends most strongly onN.
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deposition of random time incrementshk in accordance with
the deposition~update! rule given by Eq.~1!. The physics of
this growth is reflected in the utilization. Because the ut
zation is strictly related to the microscopic structure of t
interface, it is possible to make an explicit connection b
tween the utilization and the morphology of the STH and
derive an analytical formula for the theoretical mean utiliz
tion as a function of the system sizeL. In this section we
make this connection forN51 when the STH growth has
reached the saturation phase~i.e., whent@t3). Our deriva-
tion of the update distribution makes the following two sim
plifying assumptions. First, we neglect correlations betwe
nearest-neighbor local slopes. These depend on the typ
deposition, i.e., our derivation is not specific to the distrib
tion from which the depositedhk are sampled. This simpli-
fication is reflected in the assumption of equal statisti
weights assigned to the legs of binary transition graphs
represent possible choices of neighboring local sites. Sec
we neglect temporal correlations among the groups of
surface-configuration classes. Because of the above two
plifications, our theoretical result for the mean utilization is
mean-field-like approximation to the mean utilization me
sured in simulations.

A. Theoretical utilization

There are only four groups of elementary local site co
figurations of the STH that correspond to four mutually e
clusive discrete events that take place at thekth PE site att.
These are as follows: ‘‘A’’ denotes an event when the upd
rule ~1! is satisfied from the left and from the right, i.e., whe
tk21>tk and tk<tk11; ‘‘B’’ denotes an event when the
update rule~1! is not satisfied from the right, i.e., whe
tk21>tk and tk.tk11; ‘‘C’’ denotes an event when the
update rule~1! is not satisfied from the left, i.e., whentk21
,tk and tk<tk11; and ‘‘D’’ denotes an event when th
update rule~1! is not satisfied from either side, i.e., whe
tk21,tk andtk.tk11. The corresponding elementary loc
configurations of the STH at thekth PE site are denoted b
A, B, C, and D~Fig. 4!. Because of the periodicity conditio
~i.e., tL115t1), during the steady state not allL sites can
have the same elementary site configuration@35# Therefore,
in the set ofL sites there must be at least one site w
configuration A. Without losing generality, we assign the
dexk51 to one of the sites that are in the local configurati
A and enumerate the other sites accordingly, progressin
the right. Its right neighbor~having indexk52) can be only
either in configuration C or in configuration D. Similarly, it
left neighbor~having indexk5L) can only be in either B or
D. If site k52 is in configuration C, then sitek53 can be
only either in configuration C or D. If sitek52 is in D, then
site k53 can be only either in B or A. These choices a
presented as transition graphs~binary trees! in Fig. 5. We
adopt an approximation in which, during the steady state,
possible choices of transitions from thekth site to the right
neighboring (k11) site are realized on average with equ
frequency. Consequently, we assign equal statistical wei
to each leg of the transition graph in Fig. 5. Starting from t
sitek51 and progressing to the right towardsk5L, with the
5-4
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UPDATE STATISTICS IN CONSERVATIVE PARALLEL- . . . PHYSICAL REVIEW E 68, 046705 ~2003!
help of elementary transition graphs we can construct
possible configuration equivalency classes of the entire
face generated by the deposition~update! rule ~1!. These can
be categorized into groups~called p groups! based on the
number p of the deposition~update! events att, i.e., the
number of local minima in the surface configuration~coded
by A! at t. The utilization of thep group isu(p)5p/L. The
probability distribution f (p;L) of the deposition~update!
events is obtained as the quotient of the multiplicityM (p) of
the p-group configuration class and the total numberM of
configuration classes@36#.

For example, the binary tree for the construction of p
sible surface-configuration classes forL55 is shown in Fig.
6. Looking along its branches, starting from the leading A
the fixedk51 position, it is easy to identify a total of eigh
possible configuration classes of the entire surface:~1!
ACCCD; ~2! ACCDB; ~3! ACDBB; ~4! ACDAD; ~5!
ADBBB; ~6! ADBAD; ~7! ADACD; and ~8! ADADB. Note,
according to the surface construction rule, the class repre
tative ~4! is not equivalent to the class representative~7!.
This is because the leading A in configuration~7! has a local
maximum as its right neighbor and configuration~4! does not
have this property. If the assignment of an index to a s
were irrelevant, all configurations that can be obtained un

FIG. 4. The four groups of elementary local surface configu
tions of the STH at thekth site. The indexk denotes thekth PE in
the chain (N51). Each group corresponds to one of the four m
tually exclusive discrete events A, B, C, and D at an update atte
A denotes an event when the update rule is satisfied. B denote
event when the update rule is not satisfied from the right. C den
an event when the update rule is not satisfied from the left
denotes an event when the update rule is not satisfied from the
and the right.

FIG. 5. Binary branching of possible choices in constructing
surface configuration from the elementary local configurations A
C, and D of Fig. 4.~a! The alternatives that must be followe
starting with A atk51 and progressing towardsk5L to the right.
~b! The only possible alternative for a periodic chain closed ak
5L: the left neighbor of sitek51 must have configuration either B
or D.
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an even permutation of sites would have fallen into o
equivalency class. The surfaces representing configurat
~1!–~8! are sketched in Fig. 7. Each surface configurat
represents a class of infinitely many topologically equival
deformations because the deposited random time increm
is a real positive number that can take on continuous va
in the interval@0;`). There are only twop groups. In the
first group there are four classes with one letter A:M (1)
54, f (1;5)51/2, andu(1)51/5. In the second group ther
are four classes with two letters A:M (2)54, f (2;5)51/2,
and u(2)52/5. Thus, forL55 the mean utilization that is
measured during steady-state simulations is^u(L55;N
51)&5 f (1;5)u(1)1 f (2;5)u(2)53/10.

-

-
t.
an
es

eft

a
,

FIG. 6. Binary tree for the construction of all possible config
rations of the surface forL55. A number to the left of the configu
ration symbol denotes the level of branching. A number in par
thesis to the right of the configuration symbol denotes the num
of branching levels in a subtree. Notice the recurrent structure:
graph consists of the nested trees A~4!, D~3!, A~2!, and D~1!. The
dashed lines mark the transition cuts to the lower level trees. A~1!
and D~1! denote the one-level branches A and D, respectiv
that mark the end of branching. See discussion in Sec. III A
Appendix A.

FIG. 7. The graphs of possible surface-configuration classes
correspond to the configurations read along the branches from
6: ~1! ACCCD; ~2! ACCDB; ~3! ACDBB; ~4! ACDAD; ~5!
ADBBB; ~6! ADBAD; ~7! ADACD; and ~8! ADADB. Each graph
represents a class of infinitely many topologically equivalent de
mations.
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KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
For generalL, the utilization measured in simulations du
ing the steady state is the mean frequency of the local sur
minima, averaged over all admissible surface configuratio
It can be obtained from the generally valid formula for t
computation of averages:

^u~L;N!&5(
p

f ~p;L !u~p!, ~3!

where the summation extends over allp groups of the admis-
sible surface-configuration classes,u(p) is the utilization
characteristic for each group, andf (p;L) is the frequency of
the occurrence ofp group during the steady state. To find th
theoreticalf (p;L), one can exploit the recurrent structure
the corresponding binary tree~Fig. 8! in counting the classe
of the surface configurations~branches! that contain the el-
ementary site configuration A at exactlyp number of sites,
p51,2,3, . . . ,pmax5@L/2# (@L/2# denotes the integral par
which isL/2 for evenL and (L21)/2 for oddL). The details
of the derivation are given in Appendix A. The total numb
of configuration classes isM52L22. The number of
branches with exactlyp occurrences of A isM (p)5(L
21)!/@(2p21)!(L22p)! #. The frequency of occurrence o
thep group isf (p;L)5M (p)/M . Thus, the theoretical mea
utilization of the steady state is

^u~L;1!&5
1

2L22 (
p51

[L/2] S L21
2p21D p

L
5H 1/2, L52

~L11!/4L, L>3.
~4!

The theoretical utilization̂u(L;1)& is bounded from below
by ^u(L→`;1)&51/4 ~Fig. 9!.

In classifying individual configurations, the underlyin
principle is provided by the deposition rule given by Eq.~1!.
Therefore, the local A configuration represents four types

FIG. 8. The recurrent structure of the binary tree in construct
the classes of surface configurations for generalL. The meaning of
the symbols is the same as in Fig. 6. For generalL, the highest level
tree is 1A(L21) that has 2L22 branches. Each branch represent
class of surface configurations. The branches are categorized in
tinct groups. Each group contains configurations with exactlyp rep-
etitions of A(1). The smallest p is 1, the largestp is @L/2#. The
utilization in each group isp/L.
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update events and the local configuration B~or C! represents
two types of no-update events~Fig. 4!. The small differences
between the simulation results and Eq.~4!, clearly observed
in Fig. 9, come mainly from neglecting temporal correlatio
amongp groups of surface-configuration classes in our de
vation. These correlations are intrinsically present in
computation of averages over time series in simulations
are absent in our model. They depend on the type of de
sition, i.e., the probability distribution from which the ran
dom time incrementshk are sampled. A possible secon
source of discrepancies is the assumption of equal statis
weights in the transition graphs~Fig. 5!. When the actual
weights are only approximately equal, this modifies the f
quencyf (p;L) of the occurrence of ap group in Eq.~3!, so
a particular surface-configuration class may occur sligh
more ~or less! often in simulations than would result from
our assumption. Note that this modifies onlyf (p;L); the
utilization u(p) of a p group is not changed. In deriving
f (p;L) the underlying assumption implies that any class
the entire surface configurations is equally probable. The
tor 1/M51/2L22 in Eq. ~4! has the meaning of this probabi
ity ~Appendix A!.

B. Computation of averages

In simulations, the average steady-state utilization is m
sured at eacht as the arithmetic average over an ensemble
K independent simulations and then averaged over a serie
T time steps during the steady state. At eacht, this is equiva-
lent to the computation of averages over the surfa
configuration classes in accordance with Eq.~3!, where
f (p;L) is estimated from the steady-state simulation da
Denoting byG(p;L) such an ‘‘experimental’’ frequency, we
write explicitly

^u~ t !&K'
1

K (
i 51

K

u~ i ,t !5 (
p51

[L/2]

G~p,t !u~p!, ~5!

g

is-

FIG. 9. The steady-state mean utilization as a function of
system size forN51. The continuous curve represents the analy
cal result@Eq. ~4!#. It converges to lim

L→`
^u(L;1)&51/4 ~horizon-

tal line!. The circles represent the utilization measured in simu
tions, with error bars smaller than the symbol size.
5-6
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where the right-hand side~rhs! follows simply from group-
ing the summation terms. This is possible becauseu( i ,t)
takes on only the valuesu(p) that characterize thep group of
the surface-configuration classes. Having a sequence of m
sured frequenciesG(p;L) over the steady-state time interva
the time averagêG(p;L)&T can be computed for eachp.
After time averaging, Eq.~5! gives

^u&K,T' (
p51

[L/2]

^G~p!&Tu~p!. ~6!

FIG. 10. The probability distribution forL550: the theoretical
f (p;L) ~histogram! and^G(p;L)&T measured in simulations~sym-
bols!. The error bars represent one standard deviation from
mean of the measured time sequence at saturation@the quantity
dG(p) that enters Eq.~7!#. The measured frequencies were o
tained from an ensemble ofK52048 independent simulations a
K(p)/K, whereK(p) is the number of trials that produced thep
group of the surface-configuration classes.
04670
ea-

The corresponding statistical spread of the measured ave
utilization d^u&, i.e., the standard deviation of the mea
^u(L)&, can then be determined from the measured stand
deviations ofG(p;L):

d^u~L !&'A(
p

@u~p!dG~p!#2, ~7!

wheredG(p) denotes the empirical standard deviation of t
G(p;L) time sequence. At eacht, the frequenciesG(p;L)
are found by directly counting the simulations that produc
u(p)5p/L and, subsequently, computing the quotient of t
count K(p) and the total numberK of simulations in an
ensemble. Explicitly, forp51,2, . . . ,@L/2#, the measured
frequency is G(p;L)5K(p)/K, where K5(pK(p)
~Fig. 10!.

A typical time sequence ofG(p;L), measured inK
51024 independent simulations, is shown in Fig. 11. FoL
54, the theoretical steady-state frequencies,f (1;4)53/4 and
f (2;4)51/4, differ slightly from the averageŝG(p;L)&T
6dG(p) computed over an interval ofT51000 steps, be-
ginning at t5108. The measured steady-state utilizatio
^u(L;1)&6d^u(L)& is ^u(4;1)&50.316960.0077. Simi-
larly, for L511 the measured frequencies are in close ag
ment with the theory:f (1;11)5 f (5;11)55/256, f (2;11)
5 f (4;11)515/64, and f (3;11)563/128. The measured
steady-state utilization iŝu(11;1)&50.267860.0073. The
theoretical utilizations ^u(4;1)&55/16 and ^u(11;1)&
53/11@from Eq.~4!# compare with the utilizations measure
in simulations well within the statistical error bars whenK
51024,2048; likewise, there is very good agreement
generalL. However, whenK54096 the statistical sprea
d^u(L)& is small enough to see that the results of Eq.~4! lie
above the simulation data in Fig. 9.

e

ges

FIG. 11. The time sequence of frequencies of the surface configurations characterized by the utilizationu(p)5p/L. The continuous

horizontal lines represent the theoreticalf (p;L). Symbols are simulation dataG(p;L). The dashed horizontal lines represent time avera
^G(p;L)&T over an interval of 1000t steps, beginning att5108. The error bars represent one standard deviation from^G(p;L)&T as in Fig.
10. The data were taken inK51024 simulations:~a! For L54, ^G(1;4)&T50.732360.0138 and̂ G(2;4)&T50.267760.0138 and~b! for
L511, ^G(1;11)&T50.026860.0051, ^G(2;11)&T50.258360.0144, ^G(3;11)&T50.475960.0157, ^G(4;11)&T50.219460.0134, and
^G(5;11)&T50.019460.0044.
5-7
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KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
The standard deviation of the distribution ofu(p) among
admissiblep groups of the surface-configuration classes c
be measured directly in simulations as the square root of
variance var(u):

var~u!'^u2&K,T2^u&K,T
2

5 (
p51

[L/2]

^G~p;L !&Tu~p!22S (
p51

[L/2]

^G~p;L !&Tu~p!D 2

,

~8!

where the rhs comes from grouping terms in the summatio
The statistical spread inu(p) is the largest forL54 and
decreases whenL increases. Equation~8! gives the measured
average variance of the probability distribution of updates
the system, scaled byL2.

C. Probability distribution of updates

The derived theoretical probability distribution of updat
in a closed linear chain ofL processors, each carryingN
51 lattice sites and following the conservative update ru
is

f ~p;L !5
1

2L22 S L21
2p21D , ~9!

wherep is the number of updates at thetth update attempt in
the steady-state simulation. In an equivalent interpretat
Eq. ~9! gives the probability of generating a surface withp
local minima at saturation when the surface growth ob
rule ~1!. In other words, in the latter interpretationf (p;L) is
the probability distribution of the deposition events on t
surface. Equation~9!, derived in Appendix A, was alread
used in calculatinĝu(L;1)& in Eq. ~4!. Figure 12 presents
f (p;L) for various system sizes. It can be seen that the m
sured utilization iŝ u&5^p&/L, where ^p& is the mean of

FIG. 12. The probability distributionf (p;L) of p updates in a
closed linear chain ofL PEs, each carrying one lattice site an
following the conservative update rule.L5250, 500, 1000, and
1500 ~from left to right!.
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f (p;L). The variances2 of f (p;L) ~and, thus the standar
deviation ofu) can be obtained in the usual way~Appendix
B! as

s25(
m

~m2^p&!2f ~m;L !5
L21

16
~10!

for L>4 ands250 for L52,3, where

^p2&5(
m

m2f ~m;L !5
L~L13!

16
~11!

for L>4 and^p2&51 for L52,3, and

^p&5(
m

m f~m;L !5
L11

4
~12!

for L>3 and^p&51 for L52. Also, using Eq.~12!, it can
be derived that̂1/p&51 for L52, and forL>3,

K 1

pL 5(
m

1

m
f ~m;L !

5
8

L~L11! S (k
~2k21! f ~k;L12!2

L11

2L D
5

4

L S 12
1

2L21D ~13!

and forL>4,

^p3&5
L316L213L22

64
, ~14!

^p4&5
L~L3110L2115L210!

256
. ~15!

The form of Eq.~9! permits exact computations of all mo
ments of f (p;L). The corresponding recursion formula
given in Appendix B. In this way we find that the skewne
of f (p;L) is zero, which means thatf (p;L) is symmetric
about ^p&. The computed kurtosis~the fourth central mo-
ment! is strictly positive forL>4, which means thatf (p;L)
is more pointed than a Gaussian.

The theoretical standard deviation of the utilization dist
bution among variousp groups, i.e., the statistical spread
u(p) in an ensemble of independent simulations, can
computed from Eq.~10!:

s~u!5
AL21

4L
. ~16!

In an equivalent interpretation, Eq.~16! gives the distribution
of u(p) among variousp groups of surface-configuratio
classes.

The statistical distribution of the updates in the system
L processors can also be estimated directly from the sim
tion data, without any presupposed underlying model. It
sufficient to notice that the update at a PE site happens w
5-8
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the STH has a local minimum at that site and that the
surface of L sites may have no more than@L/2# local
minima. Denoting byK(p) the number of simulations tha
produced surfaces with exactlyp local minima in the se-
quence ofK independent simulations@p and K(p) are di-
rectly counted in simulations#, at anyt the experimental dis-
tribution isG(p;L)5K(p)/K. Its time average in the stead
state is^G(p;L)&T . The variance of̂ G(p;L)&T can be ob-
tained directly from the simulation data as described in S
III B @by the rhs of Eq.~8! multiplied by L2]. In the infinite
K limit ^G(p;L)&T converges to the exact steady-state dis
butiong(p;L). At any t the average of any observableQ that
depends on the number of local minima can be evaluate

^Q&K'
1

K (
r 51

K

Q~r !

5
1

K (
p51

[L/2]

K~p!S 1

K~p! (
r 51

K(p)

Q~r !D
5 (

p51

[L/2]

G~p;L !^Q&K(p) , ~17!

where ^•&K(p) is the mean over the measured configurat
classes in thep group. The exact mean in the steady state

^Q&5 (
p51

[L/2]

g~p;L !Q~p,L !, ~18!

whereQ(p,L) is the value typical for thep group.
The question that naturally arises at this point is h

close the theoretical distributionf (p;L) given by Eq. ~9!
represents the exact distributiong(p;L) that enters Eq.~18!.
The results forL550 obtained withK52048, presented as
histogram in Fig. 10, show thatf (p;L) mimics the overall
shape of the experimental^G(p;L)&T very well. Increasing
K to 4096 improves the error bars of^G(p;L)&T ~in particu-
lar, for the extreme values ofp); yet, asK gets larger the
overall shape of̂G(p;L)&T remains unchanged and the d
ference^G(p;L)&T2 f (p;L) does not entirely vanish. Thi
difference is most pronounced whenL is small and is larges
for L54. Since forL54 there are only two values ofp, it is
easy to estimate the exactg(p;L) to a high degree of confi
dence. ForK51024, ^G(1;4)&T50.732 2660.013 78 and
^G(2;4)&T50.267 7360.013 78. ForK55120, ^G(1;4)&T
50.731 8660.006 11 and̂ G(2;4)&T50.268 1360.006 11.
As K increases,̂G(p;L)&T converges tog(1;4)'0.732 and
g(2;4)'0.268, while the theoretical estimate isf (1;4)
50.75 and f (2;4)50.25. The small differenceg(p;L)
2 f (p;L) for the worst case ofL54 indicates that Eq.~9! is
a close approximation to the time-averaged exact distribu
g(p;L). We believe the primary reason for this difference
the lack of temporal correlations among variousp groups in
our computational model, as was pointed out in Sec. III
Regardless of this simplification, the theoretical standard
viationss(u) given by Eq.~16! agree withs(u) computed
directly in simulations via Eq.~8!.
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IV. PERFORMANCE OF A CONSERVATIVE ALGORITHM

The computational speedups of a parallel algorithm is
defined as the ratio of the time required to perform a co
putation in serial processing on one PE to the time the sa
computation takes in parallel processing onL processors. It
is easy to derive from the above definition that for an id
system of processors the computational speedup is the p
uct of the numberL of PEs in the system and the utilizatio
^u(L;N)& of the parallel processing environment:s
5L^u(L;N)&. In other words, the speedup is measured
the average number of PEs that work concurrently betw
two successive update attempts.

We observe that for ideal PEs the speedup as a func
F(L) must be such that the equationF(L)5s has a unique
solution, wheres is a fixed positive number. This require
ment follows naturally from the logical argument that distri
uting the computations overL ideal processors gives
unique speedup, i.e., two ideal systems having sizesL1 and
L2, respectively, may not give the sames. This means that
F(L) must be a monotonically increasing function ofL.

In our model forN51 the average number of PEs th
work in parallel, i.e., the speedup, is the mean number
local minima in the STH during steady-state simulations.
Sec. III C this number is computed explicitly as the fir
moment of a theoretical distribution given by Eq.~9!. In this
way, translating Eq.~12! to the language of applications, th
theoretical speedup that can be obtained in an ideal syste
PEs, performing conservative PDES in the ring communi
tion topology withN51, is given by

s5H 1, L52,3

~L11!/4, L>4.
~19!

In what follows we discuss the consequences of Eq.~19! @or
its alternative, Eq.~4!# from the point of view of applica-
tions.

One of the consequences is that the theoretical up
bound for^u(L;1)& is 1/2. This corresponds to the situatio
when only one of the two PEs is working at a time while t
other one is idle. In the picture when the simulations rep
sent operations performed by a parallel algorithm, whenL
52 or L53 the parallelization within the conservative u
date scheme does not give an advantage in terms of the c
putation time because the processors work alternately. Fo
ideal system of PEs, where communications between
take place instantaneously, such an operation will not p
duce speedup. For a real system of PEs, the communica
overhead will produce an actual slowdown, i.e., the para
execution time will be longer than the sequential execut
time on one PE. Between the update attempts during
steady state the average number of PEs working in parall
L^u(L;1)&5(L11)/4. This means, whenL54 or 5 the ac-
tual number of working PEs is still either 1 or 2; and wh
L56 or 7 the actual number of working PEs is 1,2, or 3
a time and on average this actual number is still either 1
2. This will produce a small speedup for an ideal system
PEs, but for a real system of PEs this speedup may be
ligible or not present at all. A noticeable advantage in ter
5-9
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KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
of speedup should be expected when the average numb
working PEs is (L11)/4.2, which givesL>8. For a real
system of PEs the best speedup will not be larger than
average speedup for an ideal system, i.e., not larger ths
given by Eq.~19!.

The parallel utilization efficiency^u(L;N)& and the
speedup, as measured by the average numberL^u(L;N)& of
PEs working in parallel, depend on the numberN of lattice
sites per PE, as well as on the numberNb of border lattice
sites per PE, and on the communication topology among
PEs. Our earlier large-scale simulations@20# show that the
worst-case scenario ofN51, studied in this work, can be
greatly improved whenN is increased while retaining th
ring communication topology with the effectiveNb52 ~Fig.
3!. On the other hand, the case ofNb52 seems to have
limited applications and should rather be considered as
intermediate model towards the study of more realistic c
servative PDES where the effectiveNb may be arbitrary.
From this perspective the case ofNb52 is really the best-
case scenario since the utilization declines with increa
number of communications between PEs, i.e., when the
fective Nb increases. In the ring communication topology,
can be expected that the actual speedup in the ideal syste
PEs should be larger than it is in the worst-case scenario
N51, but smaller than it is in the best-case scenario w
largeN andNb52. The actual speedup in the real system
PEs should not be larger than a theoretical upper bound
the ideal system. Deriving a theoretical estimate for this
per bound requires first finding a closed expression
^u(L;2)&, a problem that is still awaiting solution.

V. DISCUSSION

We showed in Sec. III that for steady-state simulations
a closed chain it is possible to explicitly correlate deposit
statistics with the surface morphology on a microsco
scale. In our approach we used simple laws of statistic
build distinct configuration classes of the virtual time ho
zon. For one particular rule of surface growth, we co
structed binary trees from which we could read the surf
equivalency classes, serving our purpose of counting a
ticular type of configurations, relevant in deriving an a
proximate analytical expression for the measured utilizati
i.e., the measured frequency of the time deposition. In
case solved in this work, the summation process was tec
cally easy once the symmetries in the binary graphs bec
apparent~Fig. 8!. In principle, our method may be applied
any surface that grows on a lattice by a known growth ru
and it can be generalized to any measurable quantityQ.
When the growth recipe is available it should be possible
construct diagrams of elementary site configurations an
translate the growth rule to dependences among the gra
An observableQ can then be computed as the average o
all available groups of classes of the surface configuratio
Q5(pf (p)q(p), where f (p) is the probability distribution
andq(p) is the value ofQ characteristic for each group. I
the example given in this work, the statistical weights
signed to each leg of an elementary transition diagram~Fig.
5! were taken to be equal. However, a different deposit
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rule may require a different choice of elementary diagra
and a different choice of statistical weights. The present
plication of the method to the 1D deposition problem on t
STH surface is a promising example that could be gene
ized to a variety of other growth processes.

In a common approach one finds the universal proper
of growing interfaces from a stochastic growth equation t
is solved in a coarse-grained approximation at large sca
One powerful technique is the renormalization group a
proach@21,30–32#. The coarse-grained solution of the st
chastic dynamics provides asymptotic scaling properties
the limit of large system sizes. Because of its continu
nature this method is not capable of giving a detailed mic
scopic description of interfaces such as the probability d
tribution of events on the growing surface. When applied
the model of conservative PDES studied in this paper,
continuum method neither gives any estimate of the utili
tion of the parallel environment and the speedup nor doe
give the scaling behavior for the utilization in the limit o
infinite system size. In earlier work, Kornisset al. @17# used
a coarse-grained method to determine that, in the steady
for N51, the conservative STH is governed by the Edwar
Wilkinson Hamiltonian@33#, which implies a nonzero utili-
zation in the infiniteL limit, i.e., the asymptotic scalability o
a generic conservative PDES. This finding explained the
served tendencies in the time evolution of the large-sc
simulation data for the utilization, which clearly showed th
the steady-state mean utilization settles down at a non
value, slightly lower than 1/4. The simplified analysis of t
microscopic structure of the conservative STH at saturat
presented in this work, enabled us to derive the analyt
formula for the utilization, Eq.~4!, in the approximation
where correlations among various surface-configurat
classes are absent during the steady state. Equation~4! pro-
vides the explicit scaling relation for the utilization, whic
shows directly the asymptotic scalability of conservati
PDES. The limiting value lim

L→`
^u(L;1)&51/4 coincides

with the estimate in Ref.@17#. The actual simulated value
for the mean utilization̂ u(L;1)& fall below the analytical
curve~Fig. 9!. This small, but statistically significant, differ
ence is evidence for small spatial and temporal correlati
inherently present in the simulation data during the ste
state. Theoretical treatment of these correlations, wh
would provide a correction to the theoretical distribution d
rived in this work, remains to be explored.

The closed form of the event distribution during stead
state simulations@Eq. ~9!# enables one to compute analyt
cally the mean of any observable that depends on the num
of local minima in the STH surface@Eq. ~18!#. In this way
we derived the explicit expressions for^pn& @Eqs.~10!–~15!#
that are valid for all values ofL within the adopted model
When N51, the measured mean number of local minim
^p& directly translates to the utilization and to the speedup
conservative PDES. This approach has an advantage
any of the common continuum methods because it gives
only the exact scaling relations in the limit of large syste
sizes but also enables one to compute analytic quant
valid for any system size. While the asymptotic properties
5-10
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a PDES~such as the scalability asL increases! are of theo-
retical interest, the explicit formulas for the performan
evaluation of a PDES for finiteL andN are of practical value
in algorithm design.

When the number of lattice sites per PE isN>3, each PE
carries two kinds of sites, interior sites and border sites. T
generates two groups of mutually exclusive update eve
updates when an interior site is randomly chosen and upd
when a border site is randomly chosen. These groups
events are mutually exclusive because during thetth update
attempt the drawing of a lattice site is performed only on
per PE. Finding the mean fraction of PEs that made an
date while a border site was selected requires solving
case ofN52. This case is different from the case ofN51
because the update rule changes. Now, at eacht we first
randomly select a border site on thekth PE, and when the
neighboring PE of the selected site has its local simula
time larger thantk the kth PE makes the update. This ‘‘one
sided’’ rule changes the deposition pattern~the STH growth
rule! because now thekth PE site does not need to be
elementary configuration A to make an update. A new r
implies a new definition ofp-group configuration classes
which is now characterized byp updates~for N51 it is
defined byp local minima!. Also, the way in which new
frequenciesf (p;L) are computed must incorporate a rando
choice of border sites. We leave the questions of deriv
update distributions forN>2 open for future investigations

VI. SUMMARY

We simulated the performance of an ideal closed chain
PEs that work in parallel in an asynchronous manner, w
updates following a generic conservative algorithm. The c
servative update rule can be seen as the mechanism tha
termines the growth of the virtual time surface of a cons
vative process. The physics of this growth is reflected in
utilization and in the interface width.

We showed that it is possible to make an explicit conn
tion between the steady-state utilization and the microsco
structure of the virtual time interface at saturation. We e
ploited this connection to derive an analytical formula for t
probability distribution of the update events in the syst
within an approximate model. Then, having the model pr
ability distribution, we computed explicit expressions for t
mean utilization and the computational speedup as funct
of the system size. Our result states that the speedup fo
ideal closed chain of PEs, each carrying one lattice s
grows linearly with the system size ass5(L11)/4 for L
>4, ands51 for L52,3.

Finally, we observe that our approach could be applied
a variety of other growth processes. In this sense, the pre
1D application to the update problem in conservative PD
is a promising example. The main advantage of the appro
is that it enables one to compute analytically quantities t
otherwise can be only estimated qualitatively in
asymptotic fashion by continuum methods.
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APPENDIX A: DERIVATION OF f „p;L …

To find the theoretical frequencyf (p;L)5M (p)/M , one
should compute the numberM (p) of surface-configuration
classes that contain the elementary configurationA ~a local
minimum of the STH! at exactlyp sites. BothM (p) andM
~the total number of configuration classes! can be easily
found by simply counting the branches of the binary tre
presented in Fig. 8.

For a givenL, we start with the highest level tree 1A(L
21) ~the left tree in Fig. 8!. This tree has (L21) branching
levels. The 1A(L21) tree branches to 2C(L22) and
2D(L22) ~the right tree in Fig. 8!, which have (L22)
branching levels, etc. The branching ends up atL
21)A(1), (L21)B(1), (L21)C(1), and (L21)D(1) that
do not branch. Therefore the total number of branches isM
5(1/2))n51

L21252L22.
The factor 1/M is the probability that any class of th

entire surface configuration appears in an individual simu
tion at t. Assuming that each leg of the binary branch in F
8 carries the statistical weight of 1/2, this probability is 1/2n,
wheren5L22 is the highest binary branching level.

To find M (p), notice ~Figs. 8 and 6! that in each A tree
there is at least one sub-branch that contains no A~along the
C branch!, and in each D tree there is exactly one sub-bran
that contains no A~along the B branch!. Let n„p;kX( r )…
denote the number of branches that contain exactlyp number
of A’s in the sub-branchkX( r ). Here, ‘‘X’’ stands either for
A or D. In this notation the ‘‘exactly one branch with no A i
the D tree’’ means

n„0;kD~r !…51. ~A1!

The kth level A tree hasn„1;kA( r )… branches that contain
exactly one A:

n„1;kA~r !…511(
s51

r 21

n„0;~k1r 2s!D~s!…. ~A2!

The meaning of Eq.~A2! can be clarified by the example o
the tree in Fig. 6. The first branch cut~the left dashed line!
separates the C sub-branch from the remainder. The C
branch~to the left of the first cut! has only one~leading! A.
Therefore, there is 1 on the rhs of Eq.~A2!. The remainder
~to the right of the first cut! is the sum of the three D trees
4D(1), 3D(2),and 2D(3).Therefore, the sum in Eq.~A2!
has three terms. Since the remainder has already one A in
5-11
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leading position, the sum must contain only the subtrees
containp50 number of A’s. In a similar fashion we obtai
for the D tree:

n„1;kD~r !…5(
s51

r 21

n„1;~k1r 2s!A~s!…, ~A3!

where the summation extends over all A trees because
left sub-branch of the D tree contains no A’s~Figs. 6 and 8!.

To find n„2;kA( r )…, one must first sum over all D tree
~to the right of the first cut in Fig. 6 or along the left graph
Fig. 8! and then sum over all A trees~to the right of the
second cut in Fig. 6 or along the right graph in Fig. 8!:

n„2;kA~r !…5(
s51

r 21

n„1;~k1r 2s!D~s!…

5(
s51

r 21

(
l 51

s21

n„1;~k1r 2 l !A~ l !…

5(
s51

r 21

(
l 51

s21 S 11 (
m51

l 21

n„0;~k1r 2m!D~m!…D .

~A4!

In the last step of Eq.~A4! we used Eq.~A2!.
In summary, in counting the branches with exactlyp num-

ber of A’s we utilize the recurrent structure of the binary tre
presented in Fig. 8. We perform the branch cuts that mark
transition from a higher level tree to a lower level tree a
iterate along the branch-cut lines. The iteration is comple
when the summation term has a form given by Eq.~A1!. In
this way, continuing from Eq.~A2!, we obtain

M ~1!5n„1;1A~L21!…

511 (
s51

L22

n„0;~L2s!D~s!…

511 (
s51

L22

15L21, ~A5!

where we used Eq.~A1!. Similarly, continuing from Eq.
~A4!, after substituting Eq.~A1!, gives

M ~2!5n„2;1A~L21!…

5 (
s51

L22

(
l 51

s21 S 11 (
m51

l 21

1D
5 (

k51

L23
k~k11!

2
5 (

k50

L24 S k12
2 D

5S L21
3 D . ~A6!

For p53 the iteration leads to:
04670
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he

s
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M ~3!5n„3;1A~L21!…

5 (
s51

L22

n„2;~L2s!D~s!…

5 (
s51

L22

(
l 51

s21

n„2;~L2 l !A~ l !…

5 (
s51

L22

(
l 51

s21

(
r 51

l 21

(
k51

r 21 S 11 (
m51

k21

1D
5 (

k51

L25
k~k11!~k12!~k13!

23334

5 (
k50

L26 S k14
4 D5S L21

5 D . ~A7!

where we used Eq.~A4! and Eq. ~A1!. For generalp
51,2, . . . ,@L/2#, we obtain

M ~p!5n„p;1A~L21!…

5 (
k151

L22

. . . (
k2p2251

k2p2321 S 11 (
k51

k2p2221

1D
5 (

k50

L22p S k12p22
2p22 D5S L21

2p21D . ~A8!

APPENDIX B: MOMENTS OF f „ p;L …

For the purpose of the computation of moments we int
duce the following notation:

^pn&L5 (
m51

[L/2]

mnf ~m;L !, ~B1!

where n50,1,2, . . . . By manipulating the factorials in
f (m;L) and shifting the summation index on the rhs of E
~B1!, it is straightforward to show that

^pn&L5
8

L~L11! (
k51

[(L12)/2]

~k21!n11~2k21! f ~k;L12!.

~B2!

With the substitutionL→L22, Eq. ~B2! becomes a recur
sion relation for̂ pn&L :

^pn&L22

~L22!~L21!

8
5^~p21!n11~2p21!&L .

~B3!

Using the binomial formula in Eq.~B3!, the recursion rela-
tion can be explicitly written out as
5-12



a

ar-
-
d

UPDATE STATISTICS IN CONSERVATIVE PARALLEL- . . . PHYSICAL REVIEW E 68, 046705 ~2003!
^pn12&L5^pn&L22

~L22!~L21!

42
1

^pn11&L

2

1(
i 50

n S n11
i D ~21!n1 i 11S ^pi 11&L2

^pi&L

2 D .

~B4!

To obtain^pn&L for arbitraryn, we iterate Eq.~B4!, starting
with the initial n50 and using the identities

^p0&L51, ~B5!

^p1&L5
L11

4
. ~B6!

Equation~B5! expresses the normalization condition. Equ
tion ~B6! follows from Eq. ~B1! after simple algebra and
from Eq. ~B5!.

For n50, Eq. ~B4! gives

^p2&L5
L~L13!

42
. ~B7!

For n51, Eq. ~B4! gives

^p3&L5
~L22!~L21!

42
^p1&L221

5^p2&L

2
22^p1&L2

^p0&L

2
.

~B8!
s.

ut

,

.

Di
s

S

04670
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Substituting Eqs.~B5!–~B7! leads to

^p3&L5
L316L213L22

43
. ~B9!

In a similar fashion, forn52, Eqs.~B4!–~B7! and Eq.~B9!
give

^p4&L5
L~L3110L2115L210!

44
. ~B10!

The variances2, the skewness, and the kurtosis off (k;L)
can be computed in the standard way@34#. The variance is
given in Eq.~10!. For the skewness we obtain skew(f )50.
The kurtosis is a positive function ofL. Explicitly, for L
>4,

kurt~ f !52
3L316L2210L11

~L21!2
. ~B11!

Equation~13! is derived in a similar way as Eq.~B3!, by
simple algebra and by shifting the summation index. An
bitrary power^p2n& can be obtained by deriving the corre
sponding recursion relation, following the lines outline
above forn.0.
on

s,

l

ut.

,

,
om-

E

ce
n

.

@1# K. Binder and D.W. Heermann,Monte Carlo Simulation in
Statistical Physics. An Introduction, 3rd ed.~Springer, Berlin,
1997!.

@2# K.M. Chandy and J. Misra, IEEE Trans. Software Eng.5, 440
~1979!.

@3# R. Fujimoto, Commun. ACM33, 30 ~1990!.
@4# J. Misra, ACM Comput. Surv.18, 39 ~1986!.
@5# B.D. Lubachevsky, Complex Syst.1, 1099~1987!.
@6# B.D. Lubachevsky, J. Comput. Phys.75, 103 ~1988!.
@7# G. Korniss, M.A. Novotny, and P.A. Rikvold, Comput. Phy

153, 488 ~1999!.
@8# B.D. Lubachevsky, V. Privman, and S.C. Roy, J. Comp

Phys.126, 152 ~1996!.
@9# G. Korniss, C.J. White, P.A. Rikvold, and M.A. Novotny

Phys. Rev. E63, 016120~2001!.
@10# G. Korniss, P.A. Rikvold, and M.A. Novotny, Phys. Rev. E66,

056127~2002!.
@11# D.A. Jefferson, ACM Trans. Programming Languages Syst7,

404 ~1985!.
@12# Phillip M. Dickens and Paul F. Reynolds, Jr., inProceedings of

the SCS Multiconference on Distributed Simulation, San
ego, edited by D. Nicol and R. Fujimoto, Simulation Serie
Vol. 22, pp. 161-164.

@13# A. Prakash and R. Subramanian, inProceedings of the Sixth
Parallel and Distributed Simulation Workshop, 1992 SC
Western Multiconference~IEEE Press, New York, 1992!, p. 85.
.

-

@14# J.S. Steinmann, inProceedings of the Seventh Workshop
Parallel and Distributed Simulation, edited by R. Bagrodia
and D. Jefferson~IEEE Computer Society Press, Los Alamito
CA, 1993!, p. 109.

@15# A. Ferscha and G. Chiola, inProceedings of the 27th Annua
Simulation Symposium, LaJolla, 1994~IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1994!.

@16# P.M.A. Sloot, B.J. Overeinder, and A. Schoneveld, Comp
Phys. Commun.142, 76 ~2001!.

@17# G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold
Phys. Rev. Lett.84, 1351~2000!.

@18# A.-L. Barabási and H.E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, 1995!.

@19# G. Korniss, M.A. Novotny, A.K. Kolakowska, and H. Guclu
in Proceedings of the 2002 ACM Symposium on Applied C
puting ~ACM, Inc., 2002!, p. 132.

@20# A. Kolakowska, M.A. Novotny, and G. Korniss, Phys. Rev.
67, 046703~2003!.

@21# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56, 889
~1986!.

@22# B.D. Lubachevsky, inProceedings of the SCS Multiconferen
on Distributed Simulation, edited by B. Unger and D. Jefferso
~SCS, San Diego, 1988!, Vol. 19, p. 183.

@23# D.M. Nicol, ACM Trans. Model. Comput. Simul.1, 24 ~1991!.
@24# G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A

Rikvold, Science299, 677 ~2003!.
5-13



a

. A

tt

er.

n-

re

in

KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 ~2003!
@25# P.A. Rikvold and M. Kolesik, J. Stat. Phys.100, 377 ~2000!.
@26# P.A. Rikvold and M. Kolesik, J. Phys. A35, L117 ~2002!.
@27# P.A. Rikvold and M. Kolesik, Phys. Rev. E66, 066116~2002!.
@28# P.A. Rikvold and M. Kolesik, Phys. Rev. E67, 066113~2003!.
@29# A. Kolakowska, M. A. Novotny, G. Korniss, and P. Verm

~unpublished!.
@30# D. Forster, D. Nelson, and M. Stephen, Phys. Rev. A16, 732

~1977!.
@31# E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys. Rev

39, 3053~1989!.
@32# C. Castellano, M. Marsili, and L. Pietronero, Phys. Rev. Le

80, 3527~1998!.
04670
.

@33# S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, S
A 381, 17 ~1982!.

@34# W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Fla
nery,Numerical Recipes in Fortran 77~Cambridge University
Press, Cambridge, 1992!.

@35# Strictly speaking, fort.0 the set of events when all sites a
in the same elementary configurationA is of measure zero. In
the absence of the periodicity condition, all sites could be
eitherB or C.

@36# For convenience we drop the parametert in the notation when
the analysis concerns the steady state.
5-14


