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Update statistics in conservative parallel-discrete-event simulations of asynchronous systems
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We model the performance of an ideal closed chait gfrocessing elements that work in parallel in an
asynchronous manner. Their state updates follow a generic conservative algorithm. The conservative update
rule determines the growth of a virtual time surface. The physics of this growth is reflected in the utilization
(the fraction of working processorand in the interface width. We show that it is possible to make an explicit
connection between the utilization and the microscopic structure of the virtual time interface. We exploit this
connection to derive the theoretical probability distribution of updates in the system within an approximate
model. It follows that the theoretical lower bound for the computational speedup(is+1)/4 forL=4. Our
approach uses simple statistics to count distinct surface-configuration classes consistent with the model growth
rule. It enables one to compute analytically microscopic properties of an interface, which are unavailable by
continuum methods.
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[. INTRODUCTION ing elements. Each logical process manages the state of the
assigned physical subsystem and progresses in its own local
In discrete-event simulations a physical system with stovirtual time (LVT). The asynchronous nature of the physical
chastic dynamics is modeled on a lattice of discrete pointslynamics implies an asynchronous system of logical pro-
and changes of its state are viewed as discrete events in timeesses where discrete events are not synchronized by a glo-
Physical processes interact with each other at various pointsal clock. Logical processes execute concurrently and ex-
in simulation time. The stochastic nature of these interactionshange time-stamped messages to perform state updates of
makes it difficult to utilize a parallel computing environment the entire physical system being simulated. A sufficient con-
to the fullest extent becausepriori there is no global clock dition for preserving causality in simulatiorithe so-called
to synchronize physical processes. Examples of such contecal causality constraiptrequires that each logical process
plex systems with underlying asynchronous dynamics comevorks out the received messages from other logical pro-
from a wide range of fields, such as activated processes icesses in nondecreasing time-stamp of@e3].
chemistry, contact processes in epidemiology and ecology Parallel-discrete-event simulatiofBDES are classified
models, population dynamics, finance markets, and commun two broad categories: conservative PDES and optimistic
nication networks and internet traffic, to mention a few. INPDES. In conservative PDES, originally studied by Chandy
physics an important example is an interacting spin systermand Misra[2,4] and introduced by Lubachevsky in the study
where stochastic processes can be simulated with a dynami¢ dynamic Ising spin systen{$,6], an algorithm does not
Monte Carlo approach. Until recently, a common belief inallow a logical process to advance its L\(ife., to proceed
the physics community was that even the simplest randomwith computationsuntil it is certain that no causality viola-
site update Monte Carlo schemlgdd were inherently serial. tion can occur. In the conservative update scenario a logical
A popular parallelization technique for these systems is thgprocess may have to be blocked and it may have to wait to
so-called *“trivial parallelization,” in which each processor ensure that no message with a lower time stamp is received
carries a copy of the full system. An obvious limitation of later. Recent physics applications of conservative PDES in
this technique is imposed by the memory requirement, whicimodeling magnetization switching7], ballistic particle
may exceed available resources for a large-scale simulatiodeposition[8], and a dynamic phase transition in highly an-
In nontrivial parallelization, a system is spatially partitioned isotropic thin-film ferromagnetf9,10] suggest that the con-
into subsystems, and each subsystem is placed on a differesgrvative algorithm should be very efficient in simulating the
processor. In other words, in this walysical processesnd  dynamics of complex systems with short-range interactions.
physical interactions between subsystems are mapped tn optimistic PDES[11-15, originated by Jefferson’s time
logical processesnd logical dependences between processwarp algorithm{11], an algorithm allows a logical process to
advance its LVT regardless of the possibility of a causality
error that may happen in the case of receiving a message

*Electronic address: alicjak@bellsouth.net with a lower time stamp than the local clock. The optimistic
"Electronic address: man40@ra.msstate.edu scenario detects causality errors and provides a recovery pro-
*Electronic address: rikvold@csit.fsu.edu cedure from the violation of the local causality constraint by
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rolling back the events that have been processed prematurelpfinite number of PEs, which suggests possible difficulties
Although there are no general performance studies to dateith data management. Thus, the measurement phase of con-
that would provide an unbiased comparison of the twaoservative PDES is not asymptotically scalapl®]. Recent
groups of algorithms, a common perception is that an optisimulation studie$20] show that conservative PDES can be
mistic PDES should outperform a conservative PDES. Howmade fully scalable when the algorithm is supplemented with
ever, in the context of physics applications to Ising spin syseither a moving time window constraif22,23 or additional
tems, recent numerical studies by Sloetal. [16] scale-free communication patterns between P&
demonstrate that near the Ising critical temperature, where From the physics point of view, the virtual time surface of
long-range correlations occur in the physical spin system bethe generic conservative PDES, with its morphology and dy-
ing modeled, the computational complexity of an optimisticnamics, can be viewed as a surface growing through deposi-
PDES and the physical complexity of the modeled systention of random time increments in accordance with a growth
are entangled, leading to a nonlinear increase of the roll-backile defined by a generic conservative PDES update rule.
length and a sudden deterioration of the run-time behaviolhe physics of this growth is reflected in the utilizatitthe
when the number of computing processors is increased. fraction of nonidling PEpthat corresponds to the mean num-
There are several aspects of PDES algorithms that shoulder of deposition events on the surface. In the case of a
be considered in systematic efficiency studies. Some impoiclosed spin chain this is equivalent to the mean density of
tant aspects are the synchronization procedures, the utilizéecal minima in the interface. It should be possible, at least
tion of the parallel environment as measured by the fractiorfor steady-state simulations, to make an explicit connection
of working processors, memory requirements, interprocessdretween the utilization and the microscopic structure of the
communications handling, scalability as measured by evalunterface. Such a connection would enable rigorous studies
ating the performance when the number of computing proof the update statistics and a closed theoretical formula for
cessors becomes large, and the speedup as measured by cohe- utilization. The coarse-grained methods previously ap-
paring the performance with sequential DES. In routinelyplied to this problem[17] provide a proof of asymptotic
performed studies to date, the efficiency is investigated in &caling properties in the limit of a large number of PEs.
heuristic fashion by testing the performance of a selecte®ecause of their continuum nature they can neither give a
application in a chosen PDES environmérg., in a parallel  detailed microscopic description of the interface nor is it cer-
simulatoy. Recently, Korniset al. [17] introduced a novel tain if their results are valid for statistically feasible moderate
and powerful approach in which a PDES algorithm can bego large numbers of PEs. On the other hand, the mean utili-
studied in an abstract way by extracting key features of theation strictly depends on the microscopic structure of the
algorithm, simulating its performance, and applying theSTH. In this paper we explore the connection between the
methods of nonequilibrium surface growjth8] to evaluate STH interface morphology on the microscale and the update
its theoretical efficiency. In the Kornisst al. approach, the statistics by addressing the above questions. Recently, simi-
main concept is the simulated time horizZ@iTH), defined as lar connections have been established between the interface
the collection of LVTs of all logical processes. The growth microstructure and its mobility for Ising and solid-on-solid
rule of this virtual time surface is defined by the communi- models with various dynamid25-28§.
cation rule among logical processg®., by their communi- Section Il outlines the simulation algorithm for modeling
cation topology, which in turn is defined by the underlying the generic conservative PDES of spatially decomposable
dynamics of the physical system being simulataald by the cellular automata when each PE carri¢dattice sites. The
way in which the algorithm handles the advances in LVTs. Insteady-state update statistics fb+ 1 is analyzed in Sec. IIl.
this picture, the utilization of the parallel environment is Here we derive formulas for the theoretical utilization and
evaluated as the mean density of local update sites of thiéne theoretical probability distribution of updates in the sys-
growing time interface, and the width of the interface at satutem within an approximate model. Our approach uses simple
ration provides a measure of desynchronization that is distatistics to build and to count distinct surface-configuration
rectly related to the memory requiremefi®]. Scalability classes consistent with a model update ride deposition
properties of a PDES algorithm can be assessed from thesele). The idea may be generally applied to any surface that
performance simulation studi¢$7,19,2Q. grows on a lattice by a known growth rule. When the growth
In the study of the STH generated by a conservativerecipe is known, it is possible to construct diagrams of local
PDES|[17], it has been determined that in the worst-casdattice-site configurations and to translate the rule to depen-
conservative scenario for a closed spin chain, when eactiences among the graphs. Then the event probability on the
processing elemerfPE) carries only one spin sité.e., each  surface is deduced from the corresponding diagram of pos-
logical process simply corresponds to the flipping of onesible surface-configuration classes. The performance of con-
spin and communicates only with its nearest neighbors, theervative algorithms is discussed in Sec. IV, where the results
time evolution of the STH on coarse-grained scales is govef Sec. Ill are applied to estimate the theoretical computa-
erned by the Kardar-Parisi-Zhang stochastic equdtd).  tional speedup for the ideal system of PEs in a ring commu-
This proves, by universality arguments, that the simulatiomication topology. In Sec. V we discuss generalizations of
phase of conservative PDES is asymptotically scalablegur approach to other growth processes and advantages that
which guarantees a nonzero utilization even for an infinitefollow in terms of practical applications such as the possibil-
number of PEs. Using the same argument, it has been shovity of computing closed-form expressions for quantities that
that the STH becomes infinitely rough in the limit of an would be unavailable by standard approaches.
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FIG. 2. The growth and roughening of the STH for 100 and
Ri=1: snapshots at; (lower surfacg¢ andt, (upper surface Here,
?1<t2<txz3700. Local heights are in arbitrary units.

FIG. 1. The mapping of physical processes to logical processe,
considered in this work. The nearest-neighbor physical interaction
(two-sided arrows in the left paron a lattice with periodic bound-
ary conditions are mapped to the ring communication topology ofized when on each PE the left and the right border slices
logical processe@wo-sided arrows in the right partEach PE car-  coincide. This case is equivalent to a closed spin chain, i.e.,
ries N lattice sites, but communications take place only at bordekg the case oN=1.
sites. In this study, each PE has at most two effective border sites. | generic conservative PDES, to simulate asynchronous

dynamics employind. processors, th&th PE generates its
IIl. MODEL SIMULATIONS OF CONSERVATIVE own local simulated timer, for the next update attempt. The
UPDATE EVENTS kth local simulated time models the LVT of theh logical

We consider an ideal system bfprocessors, arranged on Process. Update attempts are simulated as independent
a ring (Fig. 1). As an ideal system we understand a system of’0isson-random processes, in which #te random time
identical PEs, where communications between PEs takiicrements, (i.e., the random time interval between two
place instantaneously. Each PE carfiéfattice sitesN, of ~ successive attemptss exponentially distributed with unit -
which are border sites andN¢-N,) are interior sitegwhere ~ Mmean. A processor is allowed to update its Ioce_ll time only_ if
all immediate lattice neighbors reside on the samg. P f[he upd_ate_ls guaranyeed not to wolqte causality. (_)therW|se,
each PE the simulation algorithm randomly selects one of thé remains idle. The time stepis the index of the simulta-
N sites. If the selected site is a border site, the PE is requireB@ously performed update attempt. It corresponds to an inte-
to communicate with its immediate neighb®rin an update ~ 9er wall-clock time with each PE attempting an update at
attempt. If an interior site is selected, the update happen@ach value of. Explicitly, in our model simulations the ge-
without communication between PEs. For this system, a dis2€ric conservative update rule allows #te PE to update at
crete event means an update attempt. The state of the systéfy time step(+1) if either of the two conditions is satis-
ments perform operations concurrently. However, update afterior. Se_cond condmon: the randomly chosen Iatt|c_e_ site is
tempts are not synchronized by a global clock. a bprder site and either of the following update conditions is

An example of the kind of system described above is ssatisfied:
large, spatially extended ensemble of spins, arranged on a _q. :
regular lattice, with a concurrent operation of random Monte N=L:n(t)=min{r1(t), ies2(O}, @
Carlo spin-flip attempts. In this picture, the ensemble is spa- N=2:7(t)<7,(t), )
tially decomposed intd. subsystems, each of which carries
N spin sites. Each subsystem is placed on a PE, and theherer=k—1 when the left border site is chosen and
required communication is the exchange of information=k+1 when the right border site is chosen. Following a
about states of the border spiffSg. 1). In the simplest case successful update attempt, the local simulated time is incre-
of N=1, the system is a closed spin chain, and the spin-flipnented for the next update attempt(t+1)= 7(t)
attempt at thekth PE depends on the two nearest-neighbor+ 7,(t). The random time incremeng(t) is computed at
spins located on thek(-1)th and the K+ 1)th PEs. Theth eachk andt as 7, (t) = —In(r), wherer € (0;1] is a uniform
PE is not allowed to update until it receives information fromdeviate. The periodicity condition requires communication
the neighboring PEs. For genefd| a sublattice assigned to between the first and the last PEs in the chaip; ((t)
a PE has\, border spins. However, for example, in Monte = 74(t). In simulations we iterate either the update r(le
Carlo simulations, at each update attempt only one of ther the update rulg2), starting with the initial condition
border sites may be randomly selected at a time: either a sitg(t=0)=0 for all k.
from the left border slice or a site from the right border slice.  For the set ol processing elements, we define the STH
Therefore, considering communications between logical proas the set of local simulated times at time stépThe mean
cesses, there are only two effective border sites per PE whdreight of the STH is given by the mean virtual time
N=2. The case wheN>1 and the effectivi\,=1 is real-  (7(t)), =1/LS}_,7(t). Figure 2 presents the STH gener-
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deposition of random time incremenig in accordance with
the deposition(update rule given by Eq(1). The physics of
this growth is reflected in the utilization. Because the utili-
zation is strictly related to the microscopic structure of the
interface, it is possible to make an explicit connection be-

9 tween the utilization and the morphology of the STH and to
e derive an analytical formula for the theoretical mean utiliza-
Z 6o} T o0 NTo0] tion as a function of the system site In this section we
4 } A L-10% N=100| 1 make this connection foN=1 when the STH growth has
v 50F x L=10, N=10 . reached the saturation phase., whent>t,). Our deriva-
[ & L=10", N=10 1 tion of the update distribution makes the following two sim-
40r ; L=10, M=t T plifying assumptions. First, we neglect correlations between
nearest-neighbor local slopes. These depend on the type of

:. deposition, i.e., our derivation is not specific to the distribu-
ool ., . tion from which the deposited, are sampled. This simpli-
0 020, %0 a0 500 fication is reflected in the assumption of equal statistical
weights assigned to the legs of binary transition graphs that

FIG. 3. The time evolution of the utilizatiofu(t)) (averaged represent possible choices of neighboring local sites. Second,
over K=1024 simulationsfor L=10 and 16 with N=1,10,100.  we neglect temporal correlations among the groups of the
The result depends most strongly Nin surface-configuration classes. Because of the above two sim-

plifications, our theoretical result for the mean utilization is a
ated for a closed chain df =100 processors. As the time mean-field-like approximation to the mean utilization mea-
index advances, the STH grows and roughens. The time evaured in simulations.
lution of the statistical spread of the interface is characterized
by two distinct phases, the growth phaséhent<t,) and
the saturation phasgvhent>t,), separated by the cross-
over timety . For a finiteL, t« marks the transition to the There are only four groups of elementary local site con-
steady state, where the average width of the interface is coffigurations of the STH that correspond to four mutually ex-
stant in time and is given by the power lan ()2 [17,29. clusive discrete events that take place atktiePE site at.

To study the parallel efficiency, we define the utilization These are as follows: “A” denotes an event when the update
u(t) as the fraction of PEs that perform an update at theule (1) is satisfied from the left and from the right, i.e., when
parallel time steft. The simulated utilizatiogu(t)) is com- 7= and n,<m.,1; “B” denotes an event when the
puted as an ensemble average over many independent simupdate rule(1) is not satisfied from the right, i.e., when
lations. The time evolution of the simulated utilization r,_;=7, and 7,> 7, 1; “C” denotes an event when the
reaches a steady stgte(t))=const that depends on the sys- update rulg(1) is not satisfied from the left, i.e., when_
tem size(Fig. J: the steady-state utilization grows mono- <7, and r,<r7,,,; and “D” denotes an event when the
tonically with N. Note, forN=1, according to the conserva- update rule(1) is not satisfied from either side, i.e., when
tive update rulél), att the update at thkth PE site does not 7,_;<7, and > 7. 1. The corresponding elementary local
happen unless its cumulative local simulated time after ( configurations of the STH at theh PE site are denoted by
—1) steps is not larger than the cumulative local simulatedd, B, C, and D(Fig. 4). Because of the periodicity condition
times at its neighboring PE sites. This means that an updatge., 7, .= 741), during the steady state not all sites can
at thekth PE site corresponds to a local minimum of thehave the same elementary site configurafi®® Therefore,
STH at thekth site. Accordingly, the mean utilizatiqu(t))  in the set ofL sites there must be at least one site with
represents the mean number of local minima in the STHonfiguration A. Without losing generality, we assign the in-
interface att, averaged over many independent simulationsdexk=1 to one of the sites that are in the local configuration
In an individual simulation, the utilization(t) is the density A and enumerate the other sites accordingly, progressing to
of the local minima in the STH that is generated in thisthe right. Its right neighbothaving indexk=2) can be only
simulation. WherN=2 the utilizationu(t) is the density of either in configuration C or in configuration D. Similarly, its
updating sites in the interface. It is important to distinguishleft neighbor(having indexk=L) can only be in either B or
betweenu(t) and (u(t)) asu(t) is the characteristic of a D. If site k=2 is in configuration C, then sitk=3 can be
particular class of the STH configurations, wh{le(t)) is  only either in configuration C or D. If site=2 is in D, then
the average measurementugt) taken over all possible con- site k=3 can be only either in B or A. These choices are
figuration classes. In analyzing the steady-state update statigresented as transition grapfisnary trees in Fig. 5. We
tics the steady-state utilization is denotediby adopt an approximation in which, during the steady state, the
possible choices of transitions from tkéh site to the right
neighboring k+1) site are realized on average with equal
frequency. Consequently, we assign equal statistical weights

The STH of the generic PDES can be identified with ato each leg of the transition graph in Fig. 5. Starting from the
one-dimensiona(1D) interface growing on a ring with the sitek=1 and progressing to the right towarkls L, with the

A. Theoretical utilization

IIl. STEADY-STATE UPDATE STATISTICS FOR N=1
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FIG. 4. The four groups of elementary local surface configura- 4C .7 4D(1) 4B 4A(1) 4B .,” 4A(1) 4C 4D(1)
tions of the STH at théth site. The indeX denotes théth PE in | | | | | | | |
the chain N=1). Each group corresponds to one of the four mu- B B D B D D B
tually exclusive discrete events A, B, C, and D at an update attempt.
A denotes an event when the update rule is satisfied. B denotes an FIG. 6. Binary tree for the construction of all possible configu-
event when the update rule is not satisfied from the right. C denotesations of the surface fdr=5. A number to the left of the configu-
an event when the update rule is not satisfied from the left. Dration symbol denotes the level of branching. A number in paren-
denotes an event when the update rule is not satisfied from the lefbesis to the right of the configuration symbol denotes the number
and the right. of branching levels in a subtree. Notice the recurrent structure: the

graph consists of the nested tree@)A D(3), A(2), and O1). The
help of elementary transition graphs we can construct alflashed lines mark the transition cuts to the lower level tre{a‘@._ A
possible configuration equivalency classes of the entire su@"d D1) denote the one-level branches A and D, respectively,
face generated by the depositiupdaté rule (1). These can that ma_rk the end of branching. See discussion in Sec. Ill A and
be categorized into group®alled p groups based on the APPENdiXA.
numberp of the deposition(update events att, i.e., the . . .
number of local minima in the surface configurati@oded an even permutation of sites would have_ fallen Into one
by A) att. The utilization of thep group isu(p)=p/L. The equivalency class. Th_e su_rfaces representing conf_lgurat_lons
probability distribution f(p:;L) of the deposition(update (1)—(8) are sketched in Fig. 7. Each surface configuration

events is obtained as the quotient of the multiplidityp) of (rjep;r?rsner;.tsna ctl)ass of m?hmtecejly ma_rt]ydtorpzlggr[ncatl_lr}r/] eq;un;al:qntm
the p-group configuration class and the total numbérof elormations beécause the deposited random lime increme

configuration classeiS6]. is a real positive number that can take on continuous values

For example, the binary tree for the construction of pos-'.n the interval[ 0;). There are only .twqa groups. In the
sible surface-configuration classes for 5 is shown in Fig. first grOl_Jp there are four classes with one letterM(1)
6. Looking along its branches, starting from the leading A at:4' f(1;5)=1/2, a_ndu(1)=1/5. In the second ‘%”0“'0 there
the fixedk=1 position, it is easy to identify a total of eight &€ four classes with two letters M(2)=4, f(2;5)=1/2,
possible configuration classes of the entire surfage: @ndu(2)=2/5. Thus, forL=>5 the mean utilization that is
ACCCD: (2) ACCDB; (3) ACDBB; (4) ACDAD; (5) measured during steady-state simulations (i§L=5;N
ADBBB; (6) ADBAD:; (7) ADACD:; and (8) ADADB. Note, ~ — 1)) =F(1;5)u(1)+f(2;5)u(2)=3/10.
according to the surface construction rule, the class represen-
tative (4) is not equivalent to the class representat{Vg
This is because the leading A in configurati@ has a local
maximum as its right neighbor and configuratidi does not
have this property. If the assignment of an index to a site
were irrelevant, all configurations that can be obtained under

(b)
k=L:B D

AMALTY

1: C DC DB AB Alik1: A

site k:

FIG. 5. Binary branching of possible choices in constructing a
surface configuration from the elementary local configurations A, B, FIG. 7. The graphs of possible surface-configuration classes that
C, and D of Fig. 4.(a) The alternatives that must be followed correspond to the configurations read along the branches from Fig.
starting with A atk=1 and progressing towards=L to the right.  6: (1) ACCCD; (2) ACCDB; (3) ACDBB; (4) ACDAD; (5)
(b) The only possible alternative for a periodic chain closed at ADBBB; (6) ADBAD; (7) ADACD; and (8) ADADB. Each graph
=L: the left neighbor of sit&k=1 must have configuration either B represents a class of infinitely many topologically equivalent defor-
or D. mations.
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FIG. 8. The recurrent structure of the binary tree in constructing
the classes of surface configurations for generalhe meaning of o )
the symbols is the same as in Fig. 6. For genkyéihe highest level FIG. 9. The steady-state mean utilization as a function of the
tree is 1AL — 1) that has 22 branches. Each branch represents asSystem size foN=1. The continuo.us curve represents thg analyti-
class of surface configurations. The branches are categorized in dig@! resultiEq. (4)]. It converges to lim__(u(L;1))= 1/4 (horizon-
tinct groups. Each group contains configurations with exgetep-  tal line). The circles represent the utilization measured in simula-
etitions of A(1). The snallestp is 1, the largesp is [L/2]. The tions, with error bars smaller than the symbol size.
utilization in each group ip/L. . .
update events and the local configuratioioB C) represents
For general, the utilization measured in simulations dur- (WO types of no-update evenftSig. 4). The small differences
ing the steady state is the mean frequency of the local surfadtween the simulation results and E4), clearly observed
minima, averaged over all admissible surface configurationdn Fig- 9, come mainly from neglecting temporal correlations
It can be obtained from the generally valid formula for the@MONngp groups of surface-configuration classes in our deri-
computation of averages: vation. These correlations are intrinsically present in the

computation of averages over time series in simulations but
are absent in our model. They depend on the type of depo-
sition, i.e., the probability distribution from which the ran-
dom time incrementsy, are sampled. A possible second
source of discrepancies is the assumption of equal statistical

<u<L;N>>=§ f(p;L)u(p), 3

where the summation extends over@troups of the admis- / ! 1€ _
sible surface-configuration classas(p) is the utilization ~Weights in the transition graph§ig. 5. When the actual
characteristic for each group, aftp;L) is the frequency of weights are only approximately equal, this mod|f|es the fre-
the occurrence g group during the steady state. To find the duencyf(p;L) of the occurrence of a group in Eq.(3), so
theoreticalf (p;L), one can exploit the recurrent structure of & Particular surface-configuration class may occur slightly
the corresponding binary tréEig. 8 in counting the classes More (or less often in simulations than would result from
of the surface configuration®ranchesthat contain the el- Our assumption. Note that this modifies orflfp;L); the
ementary site configuration A at exactlynumber of sites, ulilization u(p) of a p group is not changed. In deriving
P=123. .. Pmax=[L/2] ([L/2] denotes the integral part, f(p;L) _the underlying assumption implies that any class of
which isL/2 for evenL and (L — 1)/2 for oddL). The details the entire surfac_e configurations is equa_llly probgble. The.fac-
of the derivation are given in Appendix A. The total numbertor 1M =1/2-"2in Eq. (4) has the meaning of this probabil-
of configuration classes iM=2-"2. The number of ity (Appendix A.

branches with exactlyp occurrences of A isM(p)=(L
—DI[(2p—1)!(L—2p)!]. The frequency of occurrence of
thep group isf(p;L)=M(p)/M. Thus, the theoretical mean
utilization of the steady state is

B. Computation of averages

In simulations, the average steady-state utilization is mea-
sured at eachas the arithmetic average over an ensemble of
K independent simulations and then averaged over a series of

(2 -1 p [1/2, L=2 T time steps during the steady state. At egdhis is equiva-
<U(|—§1)>=—2L_2 pgl 2p—1 L= (L+1)/4L, L=3. lent to the computation of averages over the surface-

4) configuration classes in accordance with E8), where
f(p;L) is estimated from the steady-state simulation data.
The theoretical utilizatioqu(L;1)) is bounded from below Denoting byG(p;L) such an “experimental” frequency, we
by (u(L—c0;1))=1/4 (Fig. 9). write explicitly
In classifying individual configurations, the underlying K
principle is provided by the deposition rule given by Eg).
Therefore, the local A configuration represents four types of

[L/2]

1
U~ 2 uli.h=2 Gp.Hup), 6
p=1

=1
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0.24r ] The corresponding statistical spread of the measured average
0.22f ; - utilization &(u), i.e., the standard deviation of the mean
o2k @ ] (u(L)), can then be determined from the measured standard
[ 1 deviations ofG(p;L):

0.18f -
0.16_— § * E

5 0.14F J 5

2 ok ] Su(L))~ % [u(p)8G(p)12, (7)

(=7 § ]

= 0 §
0.08 ] - . o
0,06k h wheresG(p) denotes the empirical standard deviation of the
Tt ; G(p;L) time sequence. At each the frequencie€s(p;L)
0.041- [0) ] are found by directly counting the simulations that produced
0.02 ' ] u(p)=p/L and, subsequently, computing the quotient of this

@W? L/ D count K(p) and the total numbeK of simulations in an

1 =t
2 4 6 8 1012 14 16 18 20 22 24 ensemble. Explicitly, forp=1,2,...[L/2], the measured
p frequency is G(p;L)=K(p)/K, where K=ZK(p)
FIG. 10. The probability distribution fot =50: the theoretical ~ (Fig. 10.
f(p;L) (histogram and(G(p;L)) measured in simulationsym- A typical time sequence of5(p;L), measured inK
bols. The error bars represent one standard deviation from the= 1024 independent simulations, is shown in Fig. 11. Eor
mean of the measured time sequence at saturdtien quantity =4, the theoretical steady-state frequenciés; 4)=3/4 and
6G(p) that enters Eq(7)]. The measured frequencies were ob- f(2;4)=1/4, differ slightly from the average&G(p;L))t
tained from an ensemble &¢=2048 independent simulations as =+ §G(p) computed over an interval of =1000 steps, be-
K(p)/K, whereK(p) is the number of trials that produced the  ginning at t=10%. The measured steady-state utilization
group of the surface-configuration classes. (u(L;1)) = &(u(L)) is (u(4;1))=0.3169-0.0077. Simi-
. ) i larly, for L=11 the measured frequencies are in close agree-
where the right-hand sidehs) follows simply from group-  ment with the theory:f(1;11)=f(5:11)=5/256, f(2;11)
ing the summation terms. This is possible becauéet) —f(4;11)=15/64, and f(3;11)=63/128. The measured
takes on only the valuag(p) that characterize thegroup of steady-state utilization igu(11;1))=0.2678-0.0073. The
the surface-configuration classes. Having a sequence of Megyaoretical  utilizations (u(4;1))=5/16 and (u(11;1))
sured frequencie§(p;L) over the steady-state time interval, —3/11[from Eq.(4)] compare with the utilizations measured
the time averagg¢G(p;L))r can be computed for eagh iy simulations well within the statistical error bars whign

After time averaging, Eq(5) gives =1024,2048; likewise, there is very good agreement for
[L/2] generalL. However, whenK=4096 the statistical spread
~ S(u(L)) is small enough to see that the results of E.lie
Wk 17~ G u(p). 6
(T pgl (GP)ru(p) © above the simulation data in Fig. 9.

FIG. 11. The time sequence of frequencies of the surface configurations characterized by the utiliggtiep/L. The continuous
horizontal lines represent the theoreti€fb;L). Symbols are simulation da@(p;L). The dashed horizontal lines represent time averages
(G(p;L))+ over an interval of 1000 steps, beginning dt=1C%. The error bars represent one standard deviation {®(p;L))t as in Fig.

10. The data were taken K= 1024 simulations(a) For L=4, (G(1;4))7=0.7323-0.0138 and G(2;4))y=0.2677-0.0138 andb) for
L=11, (G(1;11))r=0.0268+ 0.0051, (G(2;11))r=0.2583+ 0.0144, (G(3;11));=0.4759+ 0.0157, (G(4;11))r=0.2194+ 0.0134, and
(G(5;11))7=0.0194+0.0044.
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Ol 7T T T T T T ] f(p;L). The variances? of f(p;L) (and, thus the standard
0.1k . deviation ofu) can be obtained in the usual wéppendix
0.00F - B) as
0.08- - L—1
I 2_ _ 260 e ) —
oo} ] o _% (m=(p)*f(miL)=—¢ (10)
3 0.06F -
05l 1 for L=4 ando?=0 for L=2,3, where
0.04F - L(L+3)
[ ] 2y _ 280l Y o O
0.03fF ] () Em: m*f(m;L) 16 (12
0021 J \ ] for L=4 and(p?=1 for L=2,3, and
0.01f ]
0- , J \ Jouo ] T , . L+1
0 50 100 150 200p250 300 350 400 450 <p>:E mf(m;|_):T (12
m

FIG. 12. The probability distributiori(p;L) of p updates ina  for L=3 and(p)=1 for L=2. Also, using Eq(12), it can
closed linear chain of. PEs, each carrying one lattice site and be derived tha(l/p>=1 for L=2. and forL=3
following the conservative update rule.=250, 500, 1000, and ' ’

1500 (from left to righd. 1 1
<6> => —f(mL)
The standard deviation of the distribution ufp) among "
admissiblep groups of the surface-configuration classes can L+1
be measured directly in simulations as the square root of the T+ E (2k=1)f(k;L+2)— C
variance vang): (L+D 1% 2
var(u) ~(u?)g 1= (Wi 1 =ﬂ( 1- ! ) (13
L oL-1
[L/2] [L/2] 2
:pzl (G(p;L))7u(p)®-— le (G(IO;L)>TU(P)) , and forL=4,
L3+6L2+3L—2
(8) <p3>: 64 ! (14)
where the rhs comes from grouping terms in the summations.
The statistical spread in(p) is the largest fol.=4 and L(L®+10L2+15L—10)
decreases whenincreases. Equatiof®) gives the measured (p*= 256 . (15
average variance of the probability distribution of updates in
the system, scaled ky. The form of Eq.(9) permits exact computations of all mo-
ments of f(p;L). The corresponding recursion formula is
C. Probability distribution of updates given in Appendix B. In this way we find that the skewness

of f(p;L) is zero, which means thdt(p;L) is symmetric
about(p). The computed kurtosigthe fourth central mo-
men} is strictly positive forL=4, which means that(p;L)
is more pointed than a Gaussian.

The derived theoretical probability distribution of updates
in a closed linear chain of processors, each carrying
=1 lattice sites and following the conservative update rule

IS The theoretical standard deviation of the utilization distri-
L1 bution among varioup groups, i.e., the statistical spread of
f(p;l_):—( B ) 9 u(p) in an ensemble of independent simulations, can be
oL-2\2p—1 computed from Eq(10):
wherep is the number of updates at thth update attempt in L-1
the steady-state simulation. In an equivalent interpretation, o(u)= aL (16)

Eqg. (9) gives the probability of generating a surface with

local minima at saturation when the surface growth obeysn an equivalent interpretation, EA.6) gives the distribution
rule (1). In other words, in the latter interpretatié@p;L) is  of u(p) among variousp groups of surface-configuration
the probability distribution of the deposition events on theclasses.

surface. Equatior9), derived in Appendix A, was already The statistical distribution of the updates in the system of
used in calculatingu(L;1)) in Eqg. (4). Figure 12 presents L processors can also be estimated directly from the simula-
f(p;L) for various system sizes. It can be seen that the meaion data, without any presupposed underlying model. It is
sured utilization is(u)=(p)/L, where(p) is the mean of sufficient to notice that the update at a PE site happens when
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the STH has a local minimum at that site and that the 1DIV. PERFORMANCE OF A CONSERVATIVE ALGORITHM

surface ofL sites may have no more theii/2] local The computational speedupof a parallel algorithm is
minima. Denoting byK(p) the number of simulations that yefined as the ratio of the time required to perform a com-

produced surfaces with exactly local minima in the se- 1 ation in serial processing on one PE to the time the same
quence ofK independent simulationfp and K(p) are di-  compytation takes in parallel processing loprocessors. It
rectly counted in simulatiorjsat anyt the experimental dis- g easy to derive from the above definition that for an ideal
tnbutpn isG(p;L)= K(p)/K_. Its time average in the steady system of processors the computational speedup is the prod-
state is(G(p;L))r. The variance of G(p;L))y can be ob- ¢ of the numbet. of PEs in the system and the utilization
tained directly from the simulation data as described in Sec-u(L;N)) of the parallel processing environmens

Il B [by the rhs of Eq(8) multiplied by L?]. In the infinite —L(u(L;N)). In other words, the speedup is measured by
Klimit (G(p;L))r converges to the exact steady-state distri-the gqyerage number of PEs that work concurrently between
butiong(p;L). At anyt the average of any observalf)ethat 1o successive update attempts.

depends on the number of local minima can be evaluated as \\ie gpserve that for ideal PEs the speedup as a function

F(L) must be such that the equatié{L)=s has a unique

18 solution, wheres is a fixed positive number. This require-
(Qx= K 21 Q(r) ment follows naturally from the logical argument that distrib-
uting the computations ovek ideal processors gives a
p (L2 1 K@ unique speedup, i.e., two ideal systems having sizeand
K Z K(p) K(p) Z Q(r) L,, respectively, may not give the sarseThis means that
p=1 p) r=1 . . . .
F(L) must be a monotonically increasing function Lof
[L/2] In our model forN=1 the average number of PEs that
= 21 G(p;L)(Q)K(p), a7 work in parallel, i.e., the speedup, is the mean number of
=

local minima in the STH during steady-state simulations. In
) . . Sec. Il C this number is computed explicitly as the first
where(- )k p) is the mean over the measured configurationmoment of a theoretical distribution given by E@). In this
classes in the group. The exact mean in the steady state ISyay, translating Eq(12) to the language of applications, the

theoretical speedup that can be obtained in an ideal system of

[L/2] ) X . . .

] PEs, performing conservative PDES in the ring communica-
(Q)= pgl 9(p;L)Q(p,L), (18) tion topology withN=1, is given by
. . 1, L=23
whereQ(p,L) is the value typical for th@ group. s— (19)
The question that naturally arises at this point is how (L+1)/4, L=4.
close the theoretical distribution(p;L) given by Eq.(9)
represents the exact distributigip;L) that enters Eq(18).  |n what follows we discuss the consequences of (E§) [or

The results fol. =50 obtained witK = 2048, presented as a its alternative, Eq(4)] from the point of view of applica-
histogram in Fig. 10, show thdt(p;L) mimics the overall tions.

shape of the experimentéG(p;L))r very well. Increasing One of the consequences is that the theoretical upper
K to 4096 improves the error bars @B(p;L))+ (in particu-  bound for(u(L;1)) is 1/2. This corresponds to the situation
lar, for the extreme values qf); yet, asK gets larger the when only one of the two PEs is working at a time while the
overall shape of G(p;L))t remains unchanged and the dif- other one is idle. In the picture when the simulations repre-
ference(G(p;L))r—f(p;L) does not entirely vanish. This sent operations performed by a parallel algorithm, when
difference is most pronounced wheris small and is largest =2 or L =3 the parallelization within the conservative up-
for L=4. Since forL=4 there are only two values of itis  date scheme does not give an advantage in terms of the com-
easy to estimate the exagfp;L) to a high degree of confi- putation time because the processors work alternately. For an
dence. ForK=1024, (G(1;4));=0.73226:0.013 78 and ideal system of PEs, where communications between PEs
(G(2;4))7=0.267 73:0.013 78. ForK=5120, (G(1;4)); take place instantaneously, such an operation will not pro-
=0.73186:0.006 11 and G(2;4));=0.268 13:0.006 11.  duce speedup. For a real system of PEs, the communication
As K increases(G(p;L))r converges t@(1;4)~0.732 and overhead will produce an actual slowdown, i.e., the parallel
g(2;4)~0.268, while the theoretical estimate f§1;4)  execution time will be longer than the sequential execution
=0.75 and f(2;4)=0.25. The small differenceg(p;L) time on one PE. Between the update attempts during the
—f(p;L) for the worst case of =4 indicates that Eq9) is  steady state the average number of PEs working in parallel is
a close approximation to the time-averaged exact distributioh.(u(L;1))=(L+1)/4. This means, whebh=4 or 5 the ac-
g(p;L). We believe the primary reason for this difference istual number of working PEs is still either 1 or 2; and when
the lack of temporal correlations among variqugroups in ~ L=6 or 7 the actual number of working PEs is 1,2, or 3 at
our computational model, as was pointed out in Sec. Il A.a time and on average this actual number is still either 1 or
Regardless of this simplification, the theoretical standard de2. This will produce a small speedup for an ideal system of
viations o(u) given by Eq.(16) agree witho(u) computed PEs, but for a real system of PEs this speedup may be neg-
directly in simulations via Eq(8). ligible or not present at all. A noticeable advantage in terms
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of speedup should be expected when the average number mfle may require a different choice of elementary diagrams
working PEs is [+ 1)/4>2, which givesL=8. For a real and a different choice of statistical weights. The present ap-
system of PEs the best speedup will not be larger than thglication of the method to the 1D deposition problem on the
average speedup for an ideal system, i.e., not larger shanSTH surface is a promising example that could be general-
given by Eq.(19). ized to a variety of other growth processes.

The parallel utilization efficiency(u(L;N)) and the In a common approach one finds the universal properties
speedup, as measured by the average nuinfigil;N)) of  of growing interfaces from a stochastic growth equation that
PEs working in parallel, depend on the numbeof lattice s solved in a coarse-grained approximation at large scales.
sites per PE, as well as on the numbgy of border lattice  one powerful technique is the renormalization group ap-
sites per PE, and on the communication topology among thg,oach[21,30-32. The coarse-grained solution of the sto-

PEs. Our earlier large-scale simulatidi&] show that the  ,,qtic gynamics provides asymptotic scaling properties in
worst-case scenario dﬂ:.l’ .StUd'Ed In th'_s Workr can be the limit of large system sizes. Because of its continuum
greatly |mpro_ved_ Wheer'S mciehashed Vf\;h'le. re'fu;mg_ the nature this method is not capable of giving a detailed micro-
ring communication topology with the effectivé, =2 (Fig. scopic description of interfaces such as the probability dis-

3. On the other hand, the case N=2 seems to have tribution of events on the growing surface. When applied to
limited applications and should rather be considered as a{}] model of conserv tingDESg wdi d.in thi P rth
intermediate model towards the study of more realistic con- € model of conservatve - studie > Paper, the
servative PDES where the effectié, may be arbitrary. continuum method neither gives any estimate of the utiliza-
From this perspective the case Nf=2 is really the best- 10N of the parallel environment and the speedup nor does it
case scenario since the utilization declines with increasefVe the scaling behavior for the utilization in the limit of
number of communications between PEs, i.e., when the eflfinite system size. In earlier work, Korniss al. [17] used
fective N, increases. In the ring communication topology, it & coarse-grained methqd to detgrmlne that, in the steady state
can be expected that the actual speedup in the ideal systemf§f N=1, the conservative STH is governed by the Edwards-
PEs should be larger than it is in the worst-case scenario witMVilkinson Hamiltonian[33], which implies a nonzero utili-
N=1, but smaller than it is in the best-case scenario wittzation in the infinitel limit, i.e., the asymptotic scalability of
largeN andN,= 2. The actual speedup in the real system of2 generic conservative PDES. This finijing explained the ob-
PEs should not be larger than a theoretical upper bound foi€"ved tendencies in the time evolution of the large-scale
the ideal system. Deriving a theoretical estimate for this upSimulation data for the utilization, which clearly showed that
per bound requires first finding a closed expression fothe steady-state mean utilization settles down at a nonzero

(u(L;2)), a problem that is still awaiting solution. vglue, slightly lower than 1/4. The simplified analysis of the
microscopic structure of the conservative STH at saturation,
presented in this work, enabled us to derive the analytical

V. DISCUSSION formula for the utilization, Eq.(4), in the approximation
where correlations among various surface-configuration

We showed in Sec. Il that for steady-state simulations for

a closed chain it is possible to explicitly correlate depositionClasses are absent during the steady state. Equatiqaro-

statistics with the surface morphology on a micrOSCOpiCvides the explicit scaling relation for the utilization, which

scale. In our approach we used simple laws of statistics @hows dlrectiy _t_he asympt_otic Scalaf‘b'“tx of conse_rvative
build distinct configuration classes of the virtual time hori- DES. The limiting value Ilrpﬁx<u(L,1)>—1/4 coincides
zon. For one particular rule of surface growth, we con-with the estimate in Refl17]. The actual simulated values
structed binary trees from which we could read the surfacdor the mean utilizationu(L;1)) fall below the analytical
equivalency classes, serving our purpose of counting a pacurve (Fig. 9). This small, but statistically significant, differ-
ticular type of configurations, relevant in deriving an ap-ence is evidence for small spatial and temporal correlations
proximate analytical expression for the measured utilizationinherently present in the simulation data during the steady
i.e., the measured frequency of the time deposition. In thetate. Theoretical treatment of these correlations, which
case solved in this work, the summation process was technwould provide a correction to the theoretical distribution de-
cally easy once the symmetries in the binary graphs becantéved in this work, remains to be explored.

apparentFig. 8). In principle, our method may be appliedto  The closed form of the event distribution during steady-
any surface that grows on a lattice by a known growth rulestate simulation$Eq. (9)] enables one to compute analyti-
and it can be generalized to any measurable quaity cally the mean of any observable that depends on the number
When the growth recipe is available it should be possible taf local minima in the STH surfacgEq. (18)]. In this way
construct diagrams of elementary site configurations and tave derived the explicit expressions f@") [Eqgs.(10)—(15)]
translate the growth rule to dependences among the graphbat are valid for all values of within the adopted model.

An observableQ can then be computed as the average oveWhen N=1, the measured mean number of local minima
all available groups of classes of the surface configurationg:p) directly translates to the utilization and to the speedup of
Q==2,f(p)a(p), wheref(p) is the probability distribution conservative PDES. This approach has an advantage over
andq(p) is the value ofQ characteristic for each group. In any of the common continuum methods because it gives not
the example given in this work, the statistical weights as-only the exact scaling relations in the limit of large system
signed to each leg of an elementary transition diagfBig.  sizes but also enables one to compute analytic quantities
5) were taken to be equal. However, a different depositiorvalid for any system size. While the asymptotic properties of
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a PDES(such as the scalability dsincreasesare of theo- and Astronomy and the ERC Center for Computational Sci-
retical interest, the explicit formulas for the performanceences. This work was supported by NSF Grant Nos. DMR-
evaluation of a PDES for finite andN are of practical value 0113049 and DMR-0120310, and by the Department of
in algorithm design. Physics and Astronomy at MSU and the ERC Center for

When the number of lattice sites per PENis>3, each PE  Computational Sciences at MSU. This research used re-
carries two kinds of sites, interior sites and border sites. Thigources of the National Energy Research Scientific Comput-
generates two groups of mutually exclusive update eventshg Center, which was supported by the Office of Science of

updates when an interior site is randomly chosen and updatgge . s. Department of Energy under Contract No. DE-
when a border site is randomly chosen. These groups of03.76SF0009S.

events are mutually exclusive because duringttheupdate
attempt the drawing of a lattice site is performed only once

per PE. Finding the mean fraction of PEs that made an up- APPENDIX A: DERIVATION OF f(p;L)
date while a border site was selected requires solving the ) )
case ofN=2. This case is different from the case M= 1 To find the theoretical frequendy(p;L) =M(p)/M, one

because the update rule changes. Now, at @asie first ~Should compute the numbéd(p) of surface-configuration
randomly select a border site on tkth PE, and when the classes that contain the elementary configurafiofa local
neighboring PE of the selected site has its local simulatehinimum of the STHi at exactlyp sites. BothM(p) andM
time larger thanr, the kth PE makes the update. This “one- (the total number of configuration classesan be easily
sided” rule changes the deposition pattétine STH growth ~ found by simply counting the branches of the binary trees
rule) because now th&th PE site does not need to be in Presented in Fig. 8.
elementary configuration A to make an update. A new rule For a givenL, we start with the highest level tree 1IA(
implies a new definition ofp-group configuration classes, —1) (the left tree in Fig. 8 This tree hasl(—1) branching
which is now characterized bp updates(for N=1 it is levels. The 1AL—1) tree branches to 2C(-2) and
defined byp local minima. Also, the way in which new 2D(L—2) (the right tree in Fig. 8 which have [—2)
frequencied (p;L) are computed must incorporate a randombranching levels, etc. The branching ends up &t (
choice of border sites. We leave the questions of deriving~1)A(1), (L—1)B(1), (L—1)C(1), and L —1)D(1) that
update distributions foN=2 open for future investigations. do not branch. Therefore the total number of branched is
=(1/2);_j2=2""2

VI. SUMMARY The factor 1M is the probability that any class of the

ntire surface configuration appears in an individual simula-

We simulated the performance of an ideal closed chain oﬁon att. Assuming that each leg of the binary branch in Fig.

PEs that work in parallel in an asynchronous manner, wit . 2 ) . R,
updates following a generic conservative algorithm. The conr}3 ﬁ:rrgﬁs_tr Szt?;liﬂza:];’vﬁg;t&;;/rz’ ;?;] grr]?nbagl\gl I5°3/2
servative update rule can be seen as the mechanism that oY&-TO fin_d M(p) notice%Figs 3 an?j/ B that in ?each A tree

termines the growth of the virtual time surface of a CONSErs, e is at least one sub-branch that contains taldng the
i . The physi f thi h is refl in th : ) i
vative process. The physics of this growth is reflected in t branch, and in each D tree there is exactly one sub-branch

utilization and in the interface width. . i
We showed that it is possible to make an explicit connec—that contains no Aalong the B branch Let n(p;kX(r))

tion between the steady-state utilization and the microscopigenOte the number of branches that contain exgotiymber

structure of the virtual time interface at saturation. We ex—Of As in the sub-branctkX(r). Here, "X" stands either for

ploited this connection to derive an analytical formula for theA or D. In t,,h's hotation the “exactly one branch with no Ain
probability distribution of the update events in the systemthe D tree” means
within an approximate model. Then, having the model prob-

ability distribution, we computed explicit expressions for the n(0;kD(r))=1. (A1)
mean utilization and the computational speedup as functions

of the system size. Our result states that the speedup for thghe kth level A tree hasi(1:kA(r)) branches that contain
ideal closed chain of PEs, each carrying one lattice sitegxactly one A:

grows linearly with the system size a&s=(L+1)/4 for L

=4, ands=1 for L=2,3. -1
Finally, we observe that our approach could be applied to n(1-kA(r))=1+ n(0:(k+r—s)D(s A2
a variety of other growth processes. In this sense, the present (1kAr) 521 (O3 )Ds). (A2

1D application to the update problem in conservative PDES
is a promising example. The main advantage of the approacfi,o meaning of Eq(A2) can be clarified by the example of
is that it enables one to compute analytically quantities thaf s yree in Fig. 6. The first branch cthe left dashed line
otherwise can be only estimated qualitatively in angenarates the C sub-branch from the remainder. The C sub-
asymptotic fashion by continuum methods. branch(to the left of the first cithas only ongleading A.
Therefore, there is 1 on the rhs of E42). The remainder
ACKNOWLEDGMENTS (to the right of the first cytis the sum of the three D trees:
The authors thank G. Korniss for discussions. P.A.R. ap4D(1), 3D(2),and 2D(3) Therefore, the sum in EqA2)
preciates the hospitality of the MSU Department of Physicdhas three terms. Since the remainder has already one A in the
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leading position, the sum must contain only the subtrees that M(3)=n(3;1A(L—1))
containp=0 number of As. In a similar fashion we obtain

for the D tree: L2

=S§1 n(2;(L—s)D(s))

r-1
NLkD(r)= 2, n(Li(k+r=s)A(s)),  (A3) pC
= =2 2 n@i(L-DA()
s=11=1
where the summation extends over all A trees because the L-2s-11-1r-1 k-1
left sub-branch of the D tree contains no Afsigs. 6 and 8 =SS 1+ > 1)
To find n(2;kA(r)), one must first sum over all D trees 5=1 =1 1=1k=1 m=1
(to the right of the first cut in Fig. 6 or along the left graph in
Fig. 8 and then sum over all A treggo the right of the _ E k(k+1)(k+2)(k+3)
second cut in Fig. 6 or along the right graph in Fig. 8 K= 2X3X4
r-1 k+4 L-1
n(2;kA(r))= >, n(l;(k+r—s)D(s)) Z 5 | (A7)
s=1
o h d Eq(A4) and Eq. (Al). F |
_ . _ where we used Eq and Egq. . For generalp
2, 2 nGtcrr=DA(D) =1,2,...[L/2], we obtain
r-1s-1 -1
=> > |1+ > n(0;(k+r—m)D(m))]|. M(p)=n(p;1A(L—1))
s=11=1 m=1 L_2 K 1 K 4
2p-3 2p-2
(A4) => ... 1+ 1)
ki=1 kop—2=1 k=1
In the last step of Eq.A4) we used Eq(A2). L=20 o0 o L1
In summary, in counting the branches with exagtlyum- - ( +ep— ):< N ) (A8)
ber of A's we utilize the recurrent structure of the binary trees o | 2p—2 2p—-1
presented in Fig. 8. We perform the branch cuts that mark the
transition from a higher level tree to a lower level tree and
iterate along the branch-cut lines. The iteration is completed APPENDIX B: MOMENTS OF f(p;L)
when the summation term has a form given by ). In For the purpose of the computation of moments we intro-

this way, continuing from Eq(A2), we obtain duce the following notation:

M(1)=n(1;1A(L—1)) [L/2]

L-2 (PN = >, mMf(miL), (B1)
=1+ Zl n(0;(L—s)D(s)) m=1

L-2 where n=0,1,2 .... By manipulating the factorials in
=1+ 2 1=L-1, (A5) f(m;L) and shifting the summation index on the rhs of Eq.
s=1 (B1), it is straightforward to show that
where we used Eq(Al). Similarly, continuing from Eq. [(L+2)/2]
(A4), after substituting Eq(AL), gives (p"), = > (k=)™ L(2k—1)f(k:L+2).
L(L+1) &1
M(2)=n(2;1A(L—1)) (B2)
L-2s-1 1-1
= 1+ 2 1) With the substitutionL—L —2, Eq.(B2) becomes a recur-
s=11i=1 m=1 sion relation for(p"), :

= =2 (L=2)(L-1)
12 ol 2 (P2 ——g——=((P~ D" 2p-D)¢.
L-1 (B3)
Using the binomial formula in EqB3), the recursion rela-
For p=3 the iteration leads to: tion can be explicitly written out as
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N Cne | ot e
L L 22 5
I T (e )

(B4)

To obtain(p"), for arbitraryn, we iterate Eq(B4), starting
with the initial n=0 and using the identities

(P =1

1 L+1
(P =——

(BS)

(B6)
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Substituting Eqs(B5)—(B7) leads to

L3+6L2+3L-2

(p%)L= 23

(B9)

In a similar fashion, fon=2, Egs.(B4)—(B7) and Eq.(B9)
give

L(L3+10L2+15L—10)

(p*)L= 4

(B10)

The variances?, the skewness, and the kurtosis fgk; L)
can be computed in the standard wa¢]. The variance is

Equation(B5) expresses the normalization condition. Equa-given in Eq.(10). For the skewness we obtain skdy€0.
tion (B6) follows from Eq. (B1) after simple algebra and The kurtosis is a positive function df. Explicitly, for L

from Eq. (B5).
Forn=0, Eqg.(B4) gives

L+3
<|02>L——( ) (B7)
42
Forn=1, Eq.(B4) gives
L—2)(L—1) 5(p? 0
(% = oy Xy, P
4

(88)

=>4,

3L3+6L%2—-10L+1
(L—1)2

kurt(f)=2 (B11)

Equation(13) is derived in a similar way as E@B3), by
simple algebra and by shifting the summation index. An ar-
bitrary power(p~") can be obtained by deriving the corre-
sponding recursion relation, following the lines outlined
above forn>0.

[1] K. Binder and D.W. Heermannyionte Carlo Simulation in
Statistical Physics. An Introductiord ed.(Springer, Berlin,
1997.

[2] K.M. Chandy and J. Misra, IEEE Trans. Software E6g440
(1979.

[3] R. Fujimoto, Commun. ACM33, 30 (1990.

[4] J. Misra, ACM Comput. Surv18, 39 (1986.

[5] B.D. Lubachevsky, Complex Syst, 1099(1987).

[6] B.D. Lubachevsky, J. Comput. Phy&5, 103(1988.

[14] J.S. Steinmann, ifProceedings of the Seventh Workshop on
Parallel and Distributed Simulatignedited by R. Bagrodia
and D. JeffersolEEE Computer Society Press, Los Alamitos,
CA, 1993, p. 109.

[15] A. Ferscha and G. Chiola, iRroceedings of the 27th Annual
Simulation Symposium, LaJolla, 199¥EEE Computer Soci-
ety Press, Los Alamitos, CA, 1984

[16] P.M.A. Sloot, B.J. Overeinder, and A. Schoneveld, Comput.
Phys. Communl142, 76 (2002).

[7] G. Korniss, M.A. Novotny, and P.A. Rikvold, Comput. Phys. [17] G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold,

153 488(1999.

Phys. Rev. Lett84, 1351(2000.

[8] B.D. Lubachevsky, V. Privman, and S.C. Roy, J. Comput.[18] A.-L. Barabai and H.E. StanleyEractal Concepts in Surface

Phys.126, 152(1996.

Growth (Cambridge University Press, Cambridge, 1995

[9] G. Korniss, C.J. White, P.A. Rikvold, and M.A. Novotny, [19] G. Korniss, M.A. Novotny, A.K. Kolakowska, and H. Guclu,

Phys. Rev. B63, 016120(2001).
[10] G. Korniss, P.A. Rikvold, and M.A. Novotny, Phys. Rev6E,
056127(2002.

[11] D.A. Jefferson, ACM Trans. Programming Languages S§jst.

404 (1985.
[12] Phillip M. Dickens and Paul F. Reynolds, Jr.,Rmoceedings of

in Proceedings of the 2002 ACM Symposium on Applied Com-
puting (ACM, Inc., 20032, p. 132.

[20] A. Kolakowska, M.A. Novotny, and G. Korniss, Phys. Rev. E

67, 046703(2003.

[21] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&6.889

(1986.

the SCS Multiconference on Distributed Simulation, San Di-[22] B.D. Lubachevsky, ifProceedings of the SCS Multiconference

egq edited by D. Nicol and R. Fujimoto, Simulation Series

Vol. 22, pp. 161-164.

on Distributed Simulatiopedited by B. Unger and D. Jefferson
(SCS, San Diego, 1988Vol. 19, p. 183.

[13] A. Prakash and R. Subramanian, Rmoceedings of the Sixth [23] D.M. Nicol, ACM Trans. Model. Comput. Simul, 24 (1991).
Parallel and Distributed Simulation Workshop, 1992 SCS[24] G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A.

Western Multiconferenc@EEE Press, New York, 1992p. 85.

Rikvold, Science299, 677 (2003.

046705-13



KOLAKOWSKA, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 68, 046705 (2003

[25] P.A. Rikvold and M. Kolesik, J. Stat. Phy$00, 377 (2000. [33] S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser.

[26] P.A. Rikvold and M. Kolesik, J. Phys. 85, L117 (2002. A 381, 17(1982.
[27] P.A. Rikvold and M. Kolesik, Phys. Rev. &, 066116(2002.  [34] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
[28] P.A. Rikvold and M. Kolesik, Phys. Rev. &, 066113(2003. nery, Numerical Recipes in Fortran 7@ambridge University
[29] A. Kolakowska, M. A. Novotny, G. Korniss, and P. Verma Press, Cambridge, 1992

(unpublisheg [35] Strictly speaking, fot>0 the set of events when all sites are
[30] D. Forster, D. Nelson, and M. Stephen, Phys. Red6A732 in the same elementary configuratiéris of measure zero. In

(1977. the absence of the periodicity condition, all sites could be in
[31] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys. Rev. A eitherB or C.

39, 3053(1989. - ) [36] For convenience we drop the parametar the notation when
[32] C. Castellano, M. Marsili, and L. Pietronero, Phys. Rev. Lett. the analysis concerns the steady state.

80, 3527(1998.

046705-14



